Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathaniel L. Hepowit is active.

Publication


Featured researches published by Nathaniel L. Hepowit.


Proceedings of the National Academy of Sciences of the United States of America | 2011

E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea

Hugo V. Miranda; Nikita Nembhard; Dan Su; Nathaniel L. Hepowit; David J. Krause; Jonathan R. Pritz; Cortlin Phillips; Dieter Söll; Julie A. Maupin-Furlow

Based on our recent work with Haloferax volcanii, ubiquitin-like (Ubl) proteins (SAMP1 and SAMP2) are known to be covalently attached to proteins in archaea. Here, we investigated the enzymes required for the formation of these Ubl-protein conjugates (SAMPylation) and whether this system is linked to sulfur transfer. Markerless in-frame deletions were generated in H. volcanii target genes. The mutants were examined for: (i) the formation of Ubl protein conjugates, (ii) growth under various conditions, including those requiring the synthesis of the sulfur-containing molybdenum cofactor (MoCo), and (iii) the thiolation of tRNA. With this approach we found that UbaA of the E1/MoeB/ThiF superfamily was required for the formation of both SAMP1- and SAMP2-protein conjugates. In addition, UbaA, SAMP1, and MoaE (a homolog of the large subunit of molybdopterin synthase) were essential for MoCo-dependent dimethyl sulfoxide reductase activity, suggesting that these proteins function in MoCo-biosynthesis. UbaA and SAMP2 were also crucial for optimal growth at high temperature and the thiolation of tRNA. Based on these results, we propose a working model for archaea in which the E1-like UbaA can activate multiple Ubl SAMPs for protein conjugation as well as for sulfur transfer. In sulfur transfer, SAMP1 and SAMP2 appear specific for MoCo biosynthesis and the thiolation of tRNA, respectively. Overall, this study provides a fundamental insight into the diverse cellular functions of the Ubl system.


Molecular Microbiology | 2012

Archaeal JAB1/MPN/MOV34 metalloenzyme (HvJAMM1) cleaves ubiquitin‐like small archaeal modifier proteins (SAMPs) from protein‐conjugates

Nathaniel L. Hepowit; Sivakumar Uthandi; Hugo V. Miranda; Micaela Toniutti; Laurence Prunetti; Oliver Olivarez; Ian Mitchelle S. de Vera; Gail E. Fanucci; Sixue Chen; Julie A. Maupin-Furlow

Proteins with JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) domains are widespread among all domains of life, yet poorly understood. Here we report the purification and characterization of an archaeal JAMM/MPN+ domain protein (HvJAMM1) from Haloferax volcanii that cleaves ubiquitin‐like small archaeal modifier proteins (SAMP1/2) from protein conjugates. HvJAMM1 cleaved SAMP1/2 conjugates generated in H. volcanii as well as isopeptide‐ and linear‐linked SAMP1–MoaE in purified form. Cleavage of linear linked SAMP1–MoaE was dependent on the presence of the SAMP domain and the C‐terminal VSGG motif of this domain. While HvJAMM1 was inhibited by size exclusion chromatography and metal chelators, its activity could be restored by addition of excess ZnCl2. HvJAMM1 residues (Glu31, His88, His90, Ser98 and Asp101) that were conserved with the JAMM/MPN+ active‐site motif were required for enzyme activity. Together, these results provide the first example of a JAMM/MPN+ zinc metalloprotease that independently catalyses the cleavage of ubiquitin‐like (isopeptide and linear) bonds from target proteins. In archaea, HvJAMM1 likely regulates sampylation and the pools of ‘free’ SAMP available for protein modification. HvJAMM1‐type proteins are thought to release the SAMPs from proteins modified post‐translationally as well as those synthesized as domain fusions.


Molecular & Cellular Proteomics | 2014

Archaeal Ubiquitin-like SAMP3 is Isopeptide-linked to Proteins via a UbaA-dependent Mechanism

Hugo V. Miranda; Haike Antelmann; Nathaniel L. Hepowit; Nikita E. Chavarria; David J. Krause; Jonathan R. Pritz; Katrin Bäsell; Dörte Becher; Matthew A. Humbard; Luciano Brocchieri; Julie A. Maupin-Furlow

SAMP1 and SAMP2 are ubiquitin-like proteins that function as protein modifiers and are required for the production of sulfur-containing biomolecules in the archaeon Haloferax volcanii. Here we report a novel small archaeal modifier protein (named SAMP3) with a β-grasp fold and C-terminal diglycine motif characteristic of ubiquitin that is functional in protein conjugation in Hfx. volcanii. SAMP3 conjugates were dependent on the ubiquitin-activating E1 enzyme homolog of archaea (UbaA) for synthesis and were cleaved by the JAMM/MPN+ domain metalloprotease HvJAMM1. Twenty-three proteins (28 lysine residues) were found to be isopeptide-linked to the C-terminal carboxylate of SAMP3, and 331 proteins were reproducibly found associated with SAMP3 in a UbaA-dependent manner based on tandem mass spectrometry (MS/MS) analysis. The molybdopterin (MPT) synthase large subunit homolog MoaE, found samp3ylated at conserved active site lysine residues in MS/MS analysis, was also shown to be covalently bound to SAMP3 by immunoprecipitation and tandem affinity purifications. HvJAMM1 was demonstrated to catalyze the cleavage of SAMP3 from MoaE, suggesting a mechanism of controlling MPT synthase activity. The levels of samp3ylated proteins and samp3 transcripts were found to be increased by the addition of dimethyl sulfoxide to aerobically growing cells. Thus, we propose a model in which samp3ylation is covalent and reversible and controls the activity of enzymes such as MPT synthase. Sampylation of MPT synthase may govern the levels of molybdenum cofactor available and thus facilitate the scavenging of oxygen prior to the transition to respiration with molybdenum-cofactor-containing terminal reductases that use alternative electron acceptors such as dimethyl sulfoxide. Overall, our study of SAMP3 provides new insight into the diversity of functional ubiquitin-like protein modifiers and the network of ubiquitin-like protein targets in Archaea.


Proteomics | 2016

Proteome targets of ubiquitin-like samp1ylation are associated with sulfur metabolism and oxidative stress in Haloferax volcanii.

Swathi Dantuluri; Yifei Wu; Nathaniel L. Hepowit; Hui Chen; Sixue Chen; Julie A. Maupin-Furlow

Small archeal modifier proteins (SAMPs) are related to ubiquitin in tertiary structure and in their isopeptide linkage to substrate proteins. SAMPs also function in sulfur mobilization to form biomolecules such as molybdopterin and thiolated tRNA. While SAMP1 is essential for anaerobic growth and covalently attached to lysine residues of its molybdopterin synthase partner MoaE (K240 and K247), the full diversity of proteins modified by samp1ylation is not known. Here, we expand the knowledge of proteins isopeptide linked to SAMP1. LC‐MS/MS analysis of ‐Gly‐Gly signatures derived from SAMP1 S85R conjugates cleaved with trypsin was used to detect sites of sampylation (23 lysine residues) that mapped to 11 target proteins. Many of the identified target proteins were associated with sulfur metabolism and oxidative stress including MoaE, SAMP‐activating E1 enzyme (UbaA), methionine sulfoxide reductase homologs (MsrA and MsrB), and the Fe‐S assembly protein SufB. Several proteins were found to have multiple sites of samp1ylation, and the isopeptide linkage at SAMP3 lysines (K18, K55, and K62) revealed hetero‐SAMP chain topologies. Follow‐up affinity purification of selected protein targets (UbaA and MoaE) confirmed the LC‐MS/MS results. 3D homology modeling suggested sampy1ylation is autoregulatory in inhibiting the activity of its protein partners (UbaA and MoaE), while occurring on the surface of some protein targets, such as SufB and MsrA/B. Overall, we provide evidence that SAMP1 is a ubiquitin‐like protein modifier that is relatively specific in tagging its protein partners as well as proteins associated with oxidative stress response.


Mbio | 2016

Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea

Xian Fu; Rui Liu; Iona Sanchez; Cecilia Silva-Sanchez; Nathaniel L. Hepowit; Shiyun Cao; Sixue Chen; Julie A. Maupin-Furlow

ABSTRACT The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP) modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea), AAA ATPases (Cdc48/p97 and Rpt types), a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+) homolog (JAMM2), and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2) stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p) [where (p) represents phosphorylation]. The evidence suggested that the Met1-Ser2(p) form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis. IMPORTANCE This study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N-terminal degron and stimulates proteasome-mediated proteolysis. This study advances the fundamental knowledge of signal-guided proteolysis in archaea and sheds light on components that are related to the ubiquitin-proteasome system of eukaryotes. In archaea, the ubiquitin-like proteasome system is found to require function of an E1/MoeB/ThiF homolog, a type 2 JAMM/MPN+ metalloprotease, and a network of AAA ATPases for the targeted destruction of proteins. We provide evidence that the attachment of the ubiquitin-like protein is controlled by an N-terminal degron and stimulates proteasome-mediated proteolysis.


Mbio | 2017

Methionine Sulfoxide Reductase A (MsrA) and Its Function in Ubiquitin-Like Protein Modification in Archaea

Xian Fu; Zachary Adams; Rui Liu; Nathaniel L. Hepowit; Yifei Wu; Connor F. Bowmann; Jackob Moskovitz; Julie A. Maupin-Furlow

ABSTRACT Methionine sulfoxide reductase A (MsrA) is an antioxidant enzyme found in all domains of life that catalyzes the reduction of methionine-S-sulfoxide (MSO) to methionine in proteins and free amino acids. We demonstrate that archaeal MsrA has a ubiquitin-like (Ubl) protein modification activity that is distinct from its stereospecific reduction of MSO residues. MsrA catalyzes this Ubl modification activity, with the Ubl-activating E1 UbaA, in the presence of the mild oxidant dimethyl sulfoxide (DMSO) and in the absence of reductant. In contrast, the MSO reductase activity of MsrA is inhibited by DMSO and requires reductant. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis reveals that MsrA-dependent Ubl conjugates are associated with DNA replication, protein remodeling, and oxidative stress and include the Ubl-modified MsrA, Orc3 (Orc1/Cdc6), and Cdc48d (Cdc48/p97 AAA+ ATPase). Overall, we found archaeal MsrA to have opposing MSO reductase and Ubl modifying activities that are associated with oxidative stress responses and controlled by exposure to mild oxidant. IMPORTANCE Proteins that are damaged by oxidative stress are often targeted for proteolysis by the ubiquitin-proteasome system (UPS). The mechanisms that control this response are poorly understood, especially under conditions of mild oxidative stress when protein damage is modest. Here, we discovered a novel function of archaeal MsrA in guiding the Ubl modification of target proteins in the presence of mild oxidant. This newly reported activity of MsrA is distinct from its stereospecific reduction of methionine-S-sulfoxide to methionine residues. Our results are significant steps forward, first, in elucidating a protein factor that guides Ubl modification in archaea, and second, in providing an insight into oxidative stress responses that can trigger Ubl modification in a cell. IMPORTANCE Proteins that are damaged by oxidative stress are often targeted for proteolysis by the ubiquitin-proteasome system (UPS). The mechanisms that control this response are poorly understood, especially under conditions of mild oxidative stress when protein damage is modest. Here, we discovered a novel function of archaeal MsrA in guiding the Ubl modification of target proteins in the presence of mild oxidant. This newly reported activity of MsrA is distinct from its stereospecific reduction of methionine-S-sulfoxide to methionine residues. Our results are significant steps forward, first, in elucidating a protein factor that guides Ubl modification in archaea, and second, in providing an insight into oxidative stress responses that can trigger Ubl modification in a cell.


PLOS ONE | 2015

Ubiquitin-Like Protein SAMP1 and JAMM/ MPN+ Metalloprotease HvJAMM1 Constitute a System for Reversible Regulation of Metabolic Enzyme Activity in Archaea

Shiyun Cao; Nathaniel L. Hepowit; Julie A. Maupin-Furlow

Ubiquitin/ubiquitin-like (Ub/Ubl) proteins are involved in diverse cellular processes by their covalent linkage to protein substrates. Here, we provide evidence for a post-translational modification system that regulates enzyme activity which is composed of an archaeal Ubl protein (SAMP1) and a JAMM/MPN+ metalloprotease (HvJAMM1). Molybdopterin (MPT) synthase activity was found to be inhibited by covalent linkage of SAMP1 to the large subunit (MoaE) of MPT synthase. HvJAMM1 was shown to cleave the covalently linked inactive form of SAMP1-MoaE to the free functional individual SAMP1 and MoaE subunits of MPT synthase, suggesting reactivation of MPT synthase by this metalloprotease. Overall, this study provides new insight into the broad idea that Ub/Ubl modification is a post-translational process that can directly and reversibly regulate the activity of metabolic enzymes. In particular, we show that Ub/Ubl linkages on the active site residues of an enzyme (MPT synthase) can inhibit its catalytic activity and that the enzyme can be reactivated through cleavage by a JAMM/MPN+ metalloprotease.


Applied and Environmental Microbiology | 2016

Archaeal Inorganic Pyrophosphatase Displays Robust Activity under High-Salt Conditions and in Organic Solvents

Lana J. McMillan; Nathaniel L. Hepowit; Julie A. Maupin-Furlow

ABSTRACT Soluble inorganic pyrophosphatases (PPAs) that hydrolyze inorganic pyrophosphate (PPi) to orthophosphate (Pi) are commonly used to accelerate and detect biosynthetic reactions that generate PPi as a by-product. Current PPAs are inactivated by high salt concentrations and organic solvents, which limits the extent of their use. Here we report a class A type PPA of the haloarchaeon Haloferax volcanii (HvPPA) that is thermostable and displays robust PPi-hydrolyzing activity under conditions of 25% (vol/vol) organic solvent and salt concentrations from 25 mM to 3 M. HvPPA was purified to homogeneity as a homohexamer by a rapid two-step method and was found to display non-Michaelis-Menten kinetics with a V max of 465 U · mg−1 for PPi hydrolysis (optimal at 42°C and pH 8.5) and Hill coefficients that indicated cooperative binding to PPi and Mg2+. Similarly to other class A type PPAs, HvPPA was inhibited by sodium fluoride; however, hierarchical clustering and three-dimensional (3D) homology modeling revealed HvPPA to be distinct in structure from characterized PPAs. In particular, HvPPA was highly negative in surface charge, which explained its extreme resistance to organic solvents. To demonstrate that HvPPA could drive thermodynamically unfavorable reactions to completion under conditions of reduced water activity, a novel coupled assay was developed; HvPPA hydrolyzed the PPi by-product generated in 2 M NaCl by UbaA (a “salt-loving” noncanonical E1 enzyme that adenylates ubiquitin-like proteins in the presence of ATP). Overall, we demonstrate HvPPA to be useful for hydrolyzing PPi under conditions of reduced water activity that are a hurdle to current PPA-based technologies.


Extremophiles | 2014

Structural and biochemical properties of an extreme ‘salt-loving’ proteasome activating nucleotidase from the archaeon Haloferax volcanii

Laurence Prunetti; Christopher J. Reuter; Nathaniel L. Hepowit; Yifei Wu; Luisa Barrueto; Hugo V. Miranda; Karen Kelly; Julie A. Maupin-Furlow


Asia Life Sciences - The Asian International Journal of Life Sciences | 2010

Developmental historicity and saccharide heterotrophy of Schizochytrium sp. OT01: implication of docosahexaenoic acid production for biotechnological applications.

C. G. Batbatan; Nathaniel L. Hepowit; J. M. Oclarit

Collaboration


Dive into the Nathaniel L. Hepowit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xian Fu

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Yifei Wu

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Rui Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge