Julie A. Maupin-Furlow
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Julie A. Maupin-Furlow.
PLOS ONE | 2010
Amber L. Hartman; Cédric Norais; Jonathan H. Badger; Stéphane Delmas; Sam Haldenby; Ramana Madupu; Jeffrey Robinson; Hoda Khouri; Qinghu Ren; Todd M. Lowe; Julie A. Maupin-Furlow; Mecky Pohlschroder; Charles J. Daniels; Friedhelm Pfeiffer; Thorsten Allers; Jonathan A. Eisen
Background Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general. Methodology/Principal Findings We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively) and the pHV2 plasmid (6.4 kb). Conclusions/Significance The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.
Nature | 2010
Matthew A. Humbard; Hugo V. Miranda; Jae-Min Lim; David J. Krause; Jonathan R. Pritz; Guangyin Zhou; Sixue Chen; Lance Wells; Julie A. Maupin-Furlow
Archaea, one of three major evolutionary lineages of life, encode proteasomes highly related to those of eukaryotes. In contrast, archaeal ubiquitin-like proteins are less conserved and not known to function in protein conjugation. This has complicated our understanding of the origins of ubiquitination and its connection to proteasomes. Here we report two small archaeal modifier proteins, SAMP1 and SAMP2, with a β-grasp fold and carboxy-terminal diglycine motif similar to ubiquitin, that form protein conjugates in the archaeon Haloferax volcanii. The levels of SAMP-conjugates were altered by nitrogen-limitation and proteasomal gene knockout and spanned various functions including components of the Urm1 pathway. LC-MS/MS-based collision-induced dissociation demonstrated isopeptide bonds between the C-terminal glycine of SAMP2 and the ε-amino group of lysines from a number of protein targets and Lys 58 of SAMP2 itself, revealing poly-SAMP chains. The widespread distribution and diversity of pathways modified by SAMPylation suggest that this type of protein conjugation is central to the archaeal lineage.
Archives of Microbiology | 2001
Krishnan Chandra Raj; Lonnie O. Ingram; Julie A. Maupin-Furlow
Abstract. Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO2 by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon (aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from α-Proteobacteria and Anabeana azollae.
Journal of Bacteriology | 2000
Heather L. Wilson; Mark S. Ou; Henry C. Aldrich; Julie A. Maupin-Furlow
The 20S proteasome is a self-compartmentalized protease which degrades unfolded polypeptides and has been purified from eucaryotes, gram-positive actinomycetes, and archaea. Energy-dependent complexes, such as the 19S cap of the eucaryal 26S proteasome, are assumed to be responsible for the recognition and/or unfolding of substrate proteins which are then translocated into the central chamber of the 20S proteasome and hydrolyzed to polypeptide products of 3 to 30 residues. All archaeal genomes which have been sequenced are predicted to encode proteins with up to approximately 50% identity to the six ATPase subunits of the 19S cap. In this study, one of these archaeal homologs which has been named PAN for proteasome-activating nucleotidase was characterized from the hyperthermophile Methanococcus jannaschii. In addition, the M. jannaschii 20S proteasome was purified as a 700-kDa complex by in vitro assembly of the alpha and beta subunits and has an unusually high rate of peptide and unfolded-polypeptide hydrolysis at 100 degrees C. The 550-kDa PAN complex was required for CTP- or ATP-dependent degradation of beta-casein by archaeal 20S proteasomes. A 500-kDa complex of PAN(Delta1-73), which has a deletion of residues 1 to 73 of the deduced protein and disrupts the predicted N-terminal coiled-coil, also facilitated this energy-dependent proteolysis. However, this deletion increased the types of nucleotides hydrolyzed to include not only ATP and CTP but also ITP, GTP, TTP, and UTP. The temperature optimum for nucleotide (ATP) hydrolysis was reduced from 80 degrees C for the full-length protein to 65 degrees C for PAN(Delta1-73). Both PAN protein complexes were stable in the absence of ATP and were inhibited by N-ethylmaleimide and p-chloromercuriphenyl-sulfonic acid. Kinetic analysis reveals that the PAN protein has a relatively high V(max) for ATP and CTP hydrolysis of 3.5 and 5.8 micromol of P(i) per min per mg of protein as well as a relatively low affinity for CTP and ATP with K(m) values of 307 and 497 microM compared to other proteins of the AAA family. Based on electron micrographs, PAN and PAN(Delta1-73) apparently associate with the ends of the 20S proteasome cylinder. These results suggest that the M. jannaschii as well as related archaeal 20S proteasomes require a nucleotidase complex such as PAN to mediate the energy-dependent hydrolysis of folded-substrate proteins and that the N-terminal 73 amino acid residues of PAN are not absolutely required for this reaction.
Applied and Environmental Microbiology | 2010
Sivakumar Uthandi; Boutaiba Saad; Matthew A. Humbard; Julie A. Maupin-Furlow
ABSTRACT Laccases couple the oxidation of phenolic compounds to the reduction of molecular oxygen and thus span a wide variety of applications. While laccases of eukaryotes and bacteria are well characterized, these enzymes have not been described in archaea. Here, we report the purification and characterization of a laccase (LccA) from the halophilic archaeon Haloferax volcanii. LccA was secreted at high levels into the culture supernatant of a recombinant H. volcanii strain, with peak activity (170 ± 10 mU·ml−1) at stationary phase (72 to 80 h). LccA was purified 13-fold to an overall yield of 72% and a specific activity of 29.4 U·mg−1 with an absorbance spectrum typical of blue multicopper oxidases. The mature LccA was processed to expose an N-terminal Ala after the removal of 31 amino acid residues and was glycosylated to 6.9% carbohydrate content. Purified LccA oxidized a variety of organic substrates, including bilirubin, syringaldazine (SGZ), 2,2,-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and dimethoxyphenol (DMP), with DMP oxidation requiring the addition of CuSO4. Optimal oxidation of ABTS and SGZ was at 45°C and pH 6 and pH 8.4, respectively. The apparent Km values for SGZ, bilirubin, and ABTS were 35, 236, and 670 μM, with corresponding kcat values of 22, 29, and 10 s−1, respectively. The purified LccA was tolerant of high salt, mixed organosolvents, and high temperatures, with a half-life of inactivation at 50°C of 31.5 h.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Hugo V. Miranda; Nikita Nembhard; Dan Su; Nathaniel L. Hepowit; David J. Krause; Jonathan R. Pritz; Cortlin Phillips; Dieter Söll; Julie A. Maupin-Furlow
Based on our recent work with Haloferax volcanii, ubiquitin-like (Ubl) proteins (SAMP1 and SAMP2) are known to be covalently attached to proteins in archaea. Here, we investigated the enzymes required for the formation of these Ubl-protein conjugates (SAMPylation) and whether this system is linked to sulfur transfer. Markerless in-frame deletions were generated in H. volcanii target genes. The mutants were examined for: (i) the formation of Ubl protein conjugates, (ii) growth under various conditions, including those requiring the synthesis of the sulfur-containing molybdenum cofactor (MoCo), and (iii) the thiolation of tRNA. With this approach we found that UbaA of the E1/MoeB/ThiF superfamily was required for the formation of both SAMP1- and SAMP2-protein conjugates. In addition, UbaA, SAMP1, and MoaE (a homolog of the large subunit of molybdopterin synthase) were essential for MoCo-dependent dimethyl sulfoxide reductase activity, suggesting that these proteins function in MoCo-biosynthesis. UbaA and SAMP2 were also crucial for optimal growth at high temperature and the thiolation of tRNA. Based on these results, we propose a working model for archaea in which the E1-like UbaA can activate multiple Ubl SAMPs for protein conjugation as well as for sulfur transfer. In sulfur transfer, SAMP1 and SAMP2 appear specific for MoCo biosynthesis and the thiolation of tRNA, respectively. Overall, this study provides a fundamental insight into the diverse cellular functions of the Ubl system.
Nature Reviews Microbiology | 2012
Julie A. Maupin-Furlow
Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.
Journal of Bacteriology | 2004
Christopher J. Reuter; Steven J. Kaczowka; Julie A. Maupin-Furlow
The halophilic archaeon Haloferax volcanii produces three different proteins (alpha1, alpha2, and beta) that assemble into at least two 20S proteasome isoforms. This work reports the cloning and sequencing of two H. volcanii proteasome-activating nucleotidase (PAN) genes (panA and panB). The deduced PAN proteins were 60% identical with Walker A and B motifs and a second region of homology typical of AAA ATPases. The most significant region of divergence was the N terminus predicted to adopt a coiled-coil conformation involved in substrate recognition. Of the five proteasomal proteins, the alpha1, beta, and PanA proteins were the most abundant. Differential regulation of all five genes was observed, with a four- to eightfold increase in mRNA levels as cells entered stationary phase. In parallel with this mRNA increase, the protein levels of PanB and alpha2 increased severalfold during the transition from exponential growth to stationary phase, suggesting that these protein levels are regulated at least in part by mechanisms that control transcript levels. In contrast, the beta and PanA protein levels remained relatively constant, while the alpha1 protein levels exhibited only a modest increase. This lack of correlation between the mRNA and protein levels for alpha1, beta, and PanA suggests posttranscriptional mechanisms are involved in regulating the levels of these major proteasomal proteins. Together these results support a model in which the cell regulates the ratio of the different 20S proteasome and PAN proteins to modulate the structure and ultimately the function of this central energy-dependent proteolytic system.
Applied and Environmental Microbiology | 2004
Christopher J. Reuter; Julie A. Maupin-Furlow
ABSTRACT Proteasomes are energy-dependent proteases that are central to the quality control and regulated turnover of proteins in eukaryotic cells. Dissection of this proteolytic pathway in archaea, however, has been hampered by the lack of substrates that are easily detected in whole cells. In the present study, we developed a convenient reporter system by functional expression of a green fluorescent protein variant with C-terminal fusions in the haloarchaeon Haloferax volcanii. The levels of this reporter protein correlated with whole-cell fluorescence that was readily detected in culture. Accumulation of the reporter protein was dependent on the sequence of the C-terminal amino acid fusion, as well as the presence of an irreversible, proteasome-specific inhibitor (clasto-lactacystin β-lactone). This inhibitor was highly specific for H. volcanii 20S proteasomes, with a Ki of ∼40 nM. In contrast, phenylmethanesulfonyl fluoride did not influence the levels of fluorescent reporter protein or inhibit 20S proteasomes. Together, these findings provide a powerful tool for the elucidation of protein substrate recognition motifs and the identification of new genes which may be involved in the proteasome pathway of archaea.
Applied and Environmental Microbiology | 2002
Krishnan Chandra Raj; Lee A. Talarico; Lonnie O. Ingram; Julie A. Maupin-Furlow
ABSTRACT Pyruvate decarboxylase (PDC) is the key enzyme in all homo-ethanol fermentations. Although widely distributed among plants, yeasts, and fungi, PDC is absent in animals and rare in bacteria (established for only three organisms). Genes encoding the three known bacterial pdc genes have been previously described and expressed as active recombinant proteins. The pdc gene from Zymomonas mobilis has been used to engineer ethanol-producing biocatalysts for use in industry. In this paper, we describe a new bacterial pdc gene from Zymobacter palmae. The pattern of codon usage for this gene appears quite similar to that for Escherichia coli genes. In E. coli recombinants, the Z. palmae PDC represented approximately 1/3 of the soluble protein. Biochemical and kinetic properties of the Z. palmae enzyme were compared to purified PDCs from three other bacteria. Of the four bacterial PDCs, the Z. palmae enzyme exhibited the highest specific activity (130 U mg of protein−1) and the lowest Km for pyruvate (0.24 mM). Differences in biochemical properties, thermal stability, and codon usage may offer unique advantages for the development of new biocatalysts for fuel ethanol production.