Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Natsuko Jin is active.

Publication


Featured researches published by Natsuko Jin.


Nature | 2007

Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J

Clement Y. Chow; Yanling Zhang; James J. Dowling; Natsuko Jin; Maja Adamska; Kensuke Shiga; Kinga Szigeti; Michael E. Shy; Jun Li; Xuebao Zhang; James R. Lupski; Lois S. Weisman; Miriam H. Meisler

Membrane-bound phosphoinositides are signalling molecules that have a key role in vesicle trafficking in eukaryotic cells. Proteins that bind specific phosphoinositides mediate interactions between membrane-bounded compartments whose identity is partially encoded by cytoplasmic phospholipid tags. Little is known about the localization and regulation of mammalian phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a phospholipid present in small quantities that regulates membrane trafficking in the endosome–lysosome axis in yeast. Here we describe a multi-organ disorder with neuronal degeneration in the central nervous system, peripheral neuronopathy and diluted pigmentation in the ‘pale tremor’ mouse. Positional cloning identified insertion of ETn2β (early transposon 2β) into intron 18 of Fig4 (A530089I17Rik), the homologue of a yeast SAC (suppressor of actin) domain PtdIns(3,5)P2 5-phosphatase located in the vacuolar membrane. The abnormal concentration of PtdIns(3,5)P2 in cultured fibroblasts from pale tremor mice demonstrates the conserved biochemical function of mammalian Fig4. The cytoplasm of fibroblasts from pale tremor mice is filled with large vacuoles that are immunoreactive for LAMP-2 (lysosomal-associated membrane protein 2), consistent with dysfunction of the late endosome–lysosome axis. Neonatal neurodegeneration in sensory and autonomic ganglia is followed by loss of neurons from layers four and five of the cortex, deep cerebellar nuclei and other localized brain regions. The sciatic nerve exhibits reduced numbers of large-diameter myelinated axons, slowed nerve conduction velocity and reduced amplitude of compound muscle action potentials. We identified pathogenic mutations of human FIG4 (KIAA0274) on chromosome 6q21 in four unrelated patients with hereditary motor and sensory neuropathy. This novel form of autosomal recessive Charcot–Marie–Tooth disorder is designated CMT4J.


The EMBO Journal | 2008

VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse

Natsuko Jin; Clement Y. Chow; Li Liu; Sergey N. Zolov; Roderick T. Bronson; Muriel T. Davisson; Jason L Petersen; Yanling Zhang; Sujin Park; Jason E. Duex; Dan Goldowitz; Miriam H. Meisler; Lois S. Weisman

The signalling lipid PI(3,5)P2 is generated on endosomes and regulates retrograde traffic to the trans‐Golgi network. Physiological signals regulate rapid, transient changes in PI(3,5)P2 levels. Mutations that lower PI(3,5)P2 cause neurodegeneration in human patients and mice. The function of Vac14 in the regulation of PI(3,5)P2 was uncharacterized previously. Here, we predict that yeast and mammalian Vac14 are composed entirely of HEAT repeats and demonstrate that Vac14 exerts an effect as a scaffold for the PI(3,5)P2 regulatory complex by direct contact with the known regulators of PI(3,5)P2: Fig4, Fab1, Vac7 and Atg18. We also report that the mouse mutant ingls (infantile gliosis) results from a missense mutation in Vac14 that prevents the association of Vac14 with Fab1, generating a partial complex. Analysis of ingls and two additional mutants provides insight into the organization of the PI(3,5)P2 regulatory complex and indicates that Vac14 mediates three distinct mechanisms for the rapid interconversion of PI3P and PI(3,5)P2. Moreover, these studies show that the association of Fab1 with the complex is essential for viability in the mouse.


PLOS Genetics | 2011

Pathogenic Mechanism of the FIG4 Mutation Responsible for Charcot-Marie-Tooth Disease CMT4J

Guy M. Lenk; Cole J. Ferguson; Clement Y. Chow; Natsuko Jin; Julie M. Jones; Adrienne E. Grant; Sergey N. Zolov; Jesse J. Winters; Roman J. Giger; James J. Dowling; Lois S. Weisman; Miriam H. Meisler

CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5× higher than endogenous Fig4 completely rescued lethality, whereas 2× expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein.


Genetics | 2010

Discovery of Mutations in Saccharomyces cerevisiae by Pooled Linkage Analysis and Whole-Genome Sequencing

Shanda R. Birkeland; Natsuko Jin; Alev Cagla Ozdemir; Robert H. Lyons; Lois S. Weisman; Thomas E. Wilson

Many novel and important mutations arise in model organisms and human patients that can be difficult or impossible to identify using standard genetic approaches, especially for complex traits. Working with a previously uncharacterized dominant Saccharomyces cerevisiae mutant with impaired vacuole inheritance, we developed a pooled linkage strategy based on next-generation DNA sequencing to specifically identify functional mutations from among a large excess of polymorphisms, incidental mutations, and sequencing errors. The VAC6-1 mutation was verified to correspond to PHO81-R701S, the highest priority candidate reported by VAMP, the new software platform developed for these studies. Sequence data further revealed the large extent of strain background polymorphisms and structural alterations present in the host strain, which occurred by several mechanisms including a novel Ty insertion. The results provide a snapshot of the ongoing genomic changes that ultimately result in strain divergence and evolution, as well as a general model for the discovery of functional mutations in many organisms.


Molecular Biology of the Cell | 2014

Roles for PI(3,5)P2 in nutrient sensing through TORC1

Natsuko Jin; Kai Mao; Yui Jin; Gela Guram Tevzadze; Emily J. Kauffman; Sujin Park; Dave Bridges; Robbie Loewith; Alan R. Saltiel; Daniel J. Klionsky; Lois S. Weisman

The protein kinase TORC1 regulates cell growth in response to nutrients. This study demonstrates that phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) is a critical upstream modulator of TORC1 activity in yeast. In this capacity, PI(3,5)P2 is required for TORC1-dependent regulation of autophagy and nutrient-dependent endocytosis.


Journal of Cell Biology | 2017

Early protection to stress mediated by CDK-dependent PI3,5P2 signaling from the vacuole/lysosome

Natsuko Jin; Yui Jin; Lois S. Weisman

Adaptation to environmental stress is critical for cell survival. Adaptation generally occurs via changes in transcription and translation. However, there is a time lag before changes in gene expression, which suggests that more rapid mechanisms likely exist. In this study, we show that in yeast, the cyclin-dependent kinase Pho85/CDK5 provides protection against hyperosmotic stress and acts before long-term adaptation provided by Hog1. This protection requires the vacuolar/endolysosomal signaling lipid PI3,5P2. We show that Pho85/CDK5 directly phosphorylates and positively regulates the PI3P-5 kinase Fab1/PIKfyve complex and provide evidence that this regulation is conserved in mammalian cells. Moreover, this regulation is particularly crucial in yeast for the stress-induced transient elevation of PI3,5P2. Our study reveals a rapid protection mechanism regulated by Pho85/CDK5 via signaling from the vacuole/lysosome, which is distinct temporally and spatially from the previously discovered long-term adaptation Hog1 pathway, which signals from the nucleus.


Molecular Biology of the Cell | 2017

Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress

Eigo Takeda; Natsuko Jin; Eisuke Itakura; Shintaro Kira; Yoshiaki Kamada; Lois S. Weisman; Takeshi Noda; Akira Matsuura

TORC1 modulates proteosynthesis, nitrogen metabolism, stress responses, and autophagy. Here it is shown that the Sch9 branch of TORC1 signaling depends specifically on vacuolar membranes and that this specificity allows the cells to regulate selectively the outputs of divergent downstream pathways in response to oxidative stress.


The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017

Regulation of re-starting the cell cycle in stress

Natsuko Jin; Yui Jin; Lois S. Weisman


The Japanese Biochemical Society/The Molecular Biology Society of Japan | 2017

Identification of Bur1/CDK9 as a new member of TORC1 pathway that is involved in organelle-mediated cell cycle progression

Yui Jin; Natsuko Jin; Lois S. Weisman; Yoshinori Ohsumi


Archive | 2016

Signalling 2015: Cellular Functions of Phosphoinositides and Inositol Phosphates Phosphatidylinositol 3,5-bisphosphate: regulation of cellular events in space and time

Natsuko Jin; Michael J. Lang; Lois S. Weisman

Collaboration


Dive into the Natsuko Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yui Jin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujin Park

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Liu

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Muriel T. Davisson

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge