Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Navin Rauniyar is active.

Publication


Featured researches published by Navin Rauniyar.


Journal of Proteome Research | 2014

Isobaric Labeling-Based Relative Quantification in Shotgun Proteomics

Navin Rauniyar; John R. Yates

Mass spectrometry plays a key role in relative quantitative comparisons of proteins in order to understand their functional role in biological systems upon perturbation. In this review, we review studies that examine different aspects of isobaric labeling-based relative quantification for shotgun proteomic analysis. In particular, we focus on different types of isobaric reagents and their reaction chemistry (e.g., amine-, carbonyl-, and sulfhydryl-reactive). Various factors, such as ratio compression, reporter ion dynamic range, and others, cause an underestimation of changes in relative abundance of proteins across samples, undermining the ability of the isobaric labeling approach to be truly quantitative. These factors that affect quantification and the suggested combinations of experimental design and optimal data acquisition methods to increase the precision and accuracy of the measurements will be discussed. Finally, the extended application of isobaric labeling-based approach in hyperplexing strategy, targeted quantification, and phosphopeptide analysis are also examined.


Current Biology | 2014

Proximity Interactions Among Centrosome Components Identify Regulators of Centriole Duplication

Elif Nur Firat-Karalar; Navin Rauniyar; John R. Yates; Tim Stearns

The centrosome consists of a pair of centrioles and surrounding pericentriolar material (PCM). Many vertebrate cells also have an array of granules, termed centriolar satellites, that localize around the centrosome and are associated with centrosome and cilium function. Centriole duplication occurs once per cell cycle and is effected by a set of proteins including PLK4, CEP192, CEP152, CEP63, and CPAP. Information on the relationships between these components is limited due to the difficulty in assaying interactions in the context of the centrosome. Here, we used proximity-dependent biotin identification (BioID) to identify proximity interactions among centriole duplication proteins. PLK4, CEP192, and CEP152 BioID identified known physically interacting proteins and a new interaction between CEP152 and CDK5RAP2 consistent with a function of CEP152 in PCM recruitment. BioID for CEP63 and its paralog CCDC67 revealed extensive proximity interactions with centriolar satellite proteins. Focusing on these satellite proteins identified two new regulators of centriole duplication, CCDC14 and KIAA0753. Both proteins colocalize with CEP63 to satellites, bind to CEP63, and identify other satellite proteins by BioID. KIAA0753 positively regulates centriole duplication and CEP63 centrosome localization, whereas CCDC14 negatively regulates both processes. These results suggest that centriolar satellites have a previously unappreciated function in regulating centriole duplication.


Biochemistry | 2010

Mechanisms of 4-hydroxy-2-nonenal induced pro- and anti-apoptotic signaling.

Pankaj Chaudhary; Abha Sharma; Rit Vatsyayan; Sushma Yadav; Sharad S. Singhal; Navin Rauniyar; Laszlo Prokai; Sanjay Awasthi; Yogesh C. Awasthi

In recent years, 4-hydroxy-2-nonenal (4-HNE) has emerged as an important second messenger in cell cycle signaling. Here, we demonstrate that 4-HNE induces signaling for apoptosis via both the Fas-mediated extrinsic and the p53-mediated intrinsic pathways in HepG2 cells. 4-HNE induces a Fas-mediated DISC independent apoptosis pathway by activating ASK1, JNK, and caspase-3. Parallel treatment of 4-HNE to HepG2 cells also induces apoptosis by the p53 pathway through activation of Bax, p21, JNK, and caspase-3. Exposure of HepG2 cells to 4-HNE leads to the activation of both Fas and Daxx, promotes the export of Daxx from the nucleus to cytoplasm, and facilitates Fas-Daxx binding. Depletion of Daxx by siRNA results in the potentiation of apoptosis, indicating that Fas-Daxx binding in fact is inhibitory to Fas-mediated apoptosis in cells. 4-HNE-induced translocation of Daxx is also accompanied by the activation and nuclear accumulation of HSF1 and up-regulation of heat shock protein Hsp70. All these effects of 4-HNE in cells can be attenuated by ectopic expression of hGSTA4-4, the isozyme of glutathione S-transferase with high activity for 4-HNE. Through immunoprecipitation and liquid chromatography-tandem mass spectrometry, we have demonstrated the covalent binding of 4-HNE to Daxx. We also demonstrate that 4-HNE modification induces phosphorylation of Daxx at Ser668 and Ser671 to facilitate its cytoplasmic export. These results indicate that while 4-HNE exhibits toxicity through several mechanisms, in parallel it evokes signaling for defense mechanisms to self-regulate its toxicity and can simultaneously affect multiple signaling pathways through its interactions with membrane receptors and transcription factors/repressors.


Analytical Chemistry | 2009

Characterization of 4-Hydroxy-2-nonenal-Modified Peptides by Liquid Chromatography−Tandem Mass Spectrometry Using Data-Dependent Acquisition: Neutral Loss-Driven MS3 versus Neutral Loss-Driven Electron Capture Dissociation

Navin Rauniyar; Stanley M. Stevens; Katalin Prokai-Tatrai; Laszlo Prokai

Reactive oxygen species generated during oxidative stress can lead to unfavorable cellular consequences, predominantly due to formation of 4-hydroxy-2-nonenal (HNE) during lipid peroxidation. Data-dependent and neutral loss (NL)-driven MS(3) acquisition have been reported for the identification of HNE adducts by mass spectrometry-based proteomics. However, the limitation associated with this method is the ambiguity in correct assignment of the HNE modification site when more than one candidate site is present as MS(3) is triggered on the neutral loss ion. We introduce NL-triggered electron capture dissociation tandem mass spectrometry (NL-ECD-MS/MS) for the characterization of HNE-modification sites in peptides. With this method performed using a hybrid linear ion trap-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer, ECD in the FTICR unit of the instrument is initiated on precursor ions of peptides showing the neutral loss of 156 Da corresponding to an HNE molecule in the prescan acquired via collision-induced dissociation tandem mass spectrometry in the linear ion trap. In addition to manifold advantages associated with the ECD method of backbone fragmentation, including extensive sequence fragments, ECD tends to retain the HNE group during MS/MS of the precursor ion, facilitating the correct localization of the modification site. The results also suggest that predisposition of a peptide molecular ion to lose HNE during collision-induced dissociation-based fragmentation is independent of its charge state (2+ or 3+). In addition, we have demonstrated that coupling of solid-phase enrichment of HNE-modified peptides facilitates the detection of this posttranslational modification by NL-driven strategies for low-abundance proteins that are susceptible to substoichiometric carbonylation during oxidative stress.


Proteomics | 2009

Detection and identification of 4-hydroxy-2-nonenal Schiff-base adducts along with products of Michael addition using data-dependent neutral loss-driven MS3 acquisition: method evaluation through an in vitro study on cytochrome c oxidase modifications

Navin Rauniyar; Laszlo Prokai

We report a data‐dependent neutral‐loss‐driven MS3 acquisition to enhance, in addition to abundant Michael adducts, the detection of Schiff‐base adducts of proteins and 4‐hydroxy‐2‐nonenal, a reactive end product of lipid peroxidation. In vitro modification of cytochrome c oxidase, a mitochondrial protein complex, was used as a model to evaluate the method. The technique allowed for a confident validation of modification sites and also identified a Schiff‐base adduct in subunit Vb of the protein complex.


Journal of Mass Spectrometry | 2010

Identification of carbonylation sites in apomyoglobin after exposure to 4-hydroxy-2-nonenal by solid-phase enrichment and liquid chromatography-electrospray ionization tandem mass spectrometry.

Navin Rauniyar; Katalin Prokai-Tatrai; Laszlo Prokai

Identification of protein carbonylation because of covalent attachment of a lipid peroxidation end-product was performed by combining proteolytic digestion followed by solid-phase hydrazide enrichment and liquid chromatography (LC)-electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using both collision-induced dissociation (CID) and electron capture dissociation (ECD). To evaluate this approach, we selected apomyoglobin and 4-hydroxy-2-nonenal (4-HNE) as a model protein and a representative end-product of lipid peroxidation, respectively. Although the characteristic elimination of 4-HNE (156 Da) in CID was found to serve as a signature tag for the modified peptides, generation of nearly complete fragment ion series because of efficient peptide backbone cleavage (in most cases over 75%) and the capability to retain the labile 4-HNE moiety of the tryptic peptides significantly aided the elucidation of primary structural information and assignment of exact carbonylation sites in the protein, when ECD was employed. We have concluded that solid-phase enrichment with both CID- and ECD-MS/MS are advantageous during an in-depth interrogation and unequivocal localization of 4-HNE-induced carbonylation of apomyoglobin that occurs via Michael addition to its histidine residues.


Plant Physiology | 2015

Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses

Rainer Waadt; Bianca Manalansan; Navin Rauniyar; Shintaro Munemasa; Matthew A. Booker; Benjamin Brandt; Christian Waadt; Dmitri A. Nusinow; Steve A. Kay; Hans-Henning Kunz; Karin Schumacher; Alison DeLong; John R. Yates; Julian I. Schroeder

Abscisic acid-activated protein kinases interact with each other and with protein phosphatases that modulate abscisic acid responses. The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.


Methods | 2013

Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis

Navin Rauniyar; Daniel B. McClatchy; John R. Yates

Metabolic labeling of rodent proteins with ¹⁵N, a heavy stable isotope of nitrogen, provides an efficient way for relative quantitation of differentially expressed proteins. Here we describe a protocol for metabolic labeling of rats with an ¹⁵N-enriched spirulina diet. As a case study, we also demonstrate the application of ¹⁵N-enriched tissue as a common internal standard in quantitative analysis of differentially expressed proteins in neurodevelopment in rats at two different time points, postnatal day 1 and 45. We briefly discuss the bioinformatics tools, ProLucid and Census, which can easily be used in a sequential manner to identify and quantitate relative protein levels on a proteomic scale.


Journal of Proteome Research | 2014

PSEA-Quant: A Protein Set Enrichment Analysis on Label-Free and Label-Based Protein Quantification Data

Mathieu Lavallée-Adam; Navin Rauniyar; Daniel B. McClatchy; John R. Yates

The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statistical approach to computationally identify protein sets (e.g., Gene Ontology (GO) terms) that are significantly enriched with abundant proteins with reproducible quantification measurements across a set of replicates. To this end, we developed PSEA-Quant, a protein set enrichment analysis algorithm for label-free and label-based protein quantification data sets. It offers an alternative approach to classic GO analyses, models protein annotation biases, and allows the analysis of samples originating from a single condition, unlike analogous approaches such as GSEA and PSEA. We demonstrate that PSEA-Quant produces results complementary to GO analyses. We also show that PSEA-Quant provides valuable information about the biological processes involved in cystic fibrosis using label-free protein quantification of a cell line expressing a CFTR mutant. Finally, PSEA-Quant highlights the differences in the mechanisms taking place in the human, rat, and mouse brain frontal cortices based on tandem mass tag quantification. Our approach, which is available online, will thus improve the analysis of proteomics quantification data sets by providing meaningful biological insights.


Journal of Proteome Research | 2013

Comparison of protein expression ratios observed by sixplex and duplex TMT labeling method

Navin Rauniyar; Benbo Gao; Daniel B. McClatchy; John R. Yates

Stable isotope labeling via isobaric derivatization of peptides is a universally applicable approach that enables concurrent identification and quantification of proteins in different samples using tandem mass spectrometry. In this study, we evaluated the performance of amine-reactive isobaric tandem mass tag (TMT), available as duplex and sixplex sets, with regard to their ability to elucidate protein expression changes. Using rat brain tissue from two different developmental time points, postnatal day 1 (p1) and 45 (p45), as a model system, we compared the protein expression ratios (p45/p1) observed using duplex TMT tags in triplicate measurements versus sixplex tag in a single LC-MS/MS analysis. A correlation of 0.79 in relative protein abundance was observed in the proteins quantified by these two sets of reagents. However, more proteins passed the criteria for significant fold change (-1.0 ≤ log(2) ratio (p45/p1) ≥ +1.0 and p < 0.05) in the sixplex analysis. Nevertheless, in both methods most proteins showing significant fold change were identified by multiple spectra, increasing their quantification precision. Additionally, the fold change in p45 rats against p1, observed in TMT experiments, was corroborated by a metabolic labeling strategy where relative quantification of differentially expressed proteins was obtained using (15)N-labeled p45 rats as an internal standard.

Collaboration


Dive into the Navin Rauniyar's collaboration.

Top Co-Authors

Avatar

Laszlo Prokai

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

John R. Yates

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley M. Stevens

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

William E. Balch

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia Guo

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rit Vatsyayan

University of North Texas Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge