Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nayeong Cho is active.

Publication


Featured researches published by Nayeong Cho.


Journal of Geophysical Research | 2016

Radiative effects of global MODIS cloud regimes

Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee; Seiji Kato

We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.


Nature | 2017

Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions

Florent F. Malavelle; James M. Haywood; Andrew K. Jones; Andrew Gettelman; Lieven Clarisse; Sophie Bauduin; Richard P. Allan; Inger Helene H. Karset; Jón Egill Kristjánsson; Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee; Nicolas Bellouin; Olivier Boucher; Daniel P. Grosvenor; Kenneth S. Carslaw; S. Dhomse; G. W. Mann; Anja Schmidt; Hugh Coe; Margaret E. Hartley; Mohit Dalvi; Adrian Hill; Ben Johnson; Colin E. Johnson; Jeff R. Knight; Fiona M. O’Connor; Daniel G. Partridge; P. Stier; Gunnar Myhre

Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol–cloud interactions. Here we show that the massive 2014–2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets—consistent with expectations—but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around −0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.&NA; Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol‐cloud interactions. Here we show that the massive 2014‐2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets—consistent with expectations—but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global‐mean radiative forcing of around −0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid‐water‐path response. Investigations of an Icelandic volcanic eruption confirm that sulfate aerosols caused a discernible yet transient brightening effect, as predicted, but their effect on the liquid water path was unexpectedly negligible.


Journal of Geophysical Research | 2014

An examination of the nature of global MODIS cloud regimes

Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee; Seiji Kato; George J. Huffman

We introduce global cloud regimes (previously also referred to as “weather states”) derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earths Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.


Journal of Geophysical Research | 2017

Using MODIS cloud regimes to sort diagnostic signals of aerosol‐cloud‐precipitation interactions

Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee

Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.


Journal of Geophysical Research | 2016

Interregional differences in MODIS-derived cloud regimes†

Jussi Leinonen; Matthew Lebsock; Lazaros Oreopoulos; Nayeong Cho

Cloud regimes based on histogram clustering offer a potentially useful tool for observational analysis of clouds. The utility of the regimes depends on their ability to identify cloud structures that are associated with distinct meteorological conditions. In this study, active remote sensing observations from CloudSat and CALIPSO are binned according to the cloud regimes derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The occurrence of CloudSat radar reflectivity by altitude, as well as CloudSat-CALIPSO retrievals of cloud cover, precipitation occurrence, cloud radiative effect, and multilayered cloud structure are analyzed for each MODIS cloud regime and for different regions. While the picture of the regimes given by CloudSat and CALIPSO is generally consistent with that derived from MODIS, substantial region-to-region variability is found within the regimes. The regimes constrain the shortwave cloud radiative effect well, while the longwave effect and the precipitation occurrence exhibit more variability. The joint distributions of radar reflectivity and altitude also reveal differences in the structure of clouds within each regime. Thus, it appears that there is region-dependent variability within each regime, resulting from the different meteorological environments. Among the major differences in the cloud structure are cloud top height in convective clouds and the number of distinct cloud layers in boundary layer clouds. Thus, passive optical sensors appear limited in their ability to characterize clouds and assign them to distinct regimes. The differences can be used to estimate the cloud regime inherent variability for studies that use them as a proxy for the climate effects of clouds.


Journal of Geophysical Research | 2017

New insights about cloud vertical structure from CloudSat and CALIPSO observations

Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee

Active cloud observations from A-Trains CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major Cloud Vertical Structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap, and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds which represent ~53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling, and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of MODIS cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.


Atmospheric Chemistry and Physics | 2017

Contrasting the Co-variability of Daytime Cloud and Precipitation over Tropical Land and Ocean

Daeho Jin; Lazaros Oreopoulos; Dongmin Lee; Nayeong Cho; Jackson Tan

The co-variability of cloud and precipitation in the extended tropics (35°N−35°S) is investigated using contemporaneous datasets for a 13-year period. The goal is to quantify potential relationships between cloud type amounts and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different 10 characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in one-degree grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) dataset aggregated to the same grid. 15 It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with “weak” (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between 20 weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.


Archive | 2017

The Role of Thermodynamic Phase Shifts in the Extratropical Cloud Optical Depth Feedback [STUB]

Ivy Tan; Lazaros Oraiopoulos; Chen Zhou; Nayeong Cho


Journal of Geophysical Research | 2017

Using MODIS cloud regimes to sort diagnostic signals of aerosol-cloud-precipitation interactions: AEROSOL-CLOUD-PRECIPITATION INTERACTIONS

Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee


Journal of Geophysical Research | 2017

New insights about cloud vertical structure from CloudSat and CALIPSO observations: A New Look at Cloud Vertical Structure

Lazaros Oreopoulos; Nayeong Cho; Dongmin Lee

Collaboration


Dive into the Nayeong Cho's collaboration.

Top Co-Authors

Avatar

Lazaros Oreopoulos

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Dongmin Lee

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Seiji Kato

Langley Research Center

View shared research outputs
Top Co-Authors

Avatar

Daeho Jin

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

George J. Huffman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jackson Tan

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Jussi Leinonen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Matthew Lebsock

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Andrew Gettelman

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Dong Min Lee

Morgan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge