Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nazamid Saari is active.

Publication


Featured researches published by Nazamid Saari.


Marine Drugs | 2011

High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review

Sara Bordbar; Farooq Anwar; Nazamid Saari

Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids. This review is mainly designed to cover the high-value components and bioactives as well as the multiple biological and therapeutic properties of sea cucumbers with regard to exploring their potential uses for functional foods and nutraceuticals.


International Journal of Molecular Sciences | 2012

Valuable Nutrients and Functional Bioactives in Different Parts of Olive (Olea europaea L.)—A Review

Rahele Ghanbari; Farooq Anwar; Khalid Mohammed Alkharfy; Anwar ul Hassan Gilani; Nazamid Saari

The Olive tree (Olea europaea L.), a native of the Mediterranean basin and parts of Asia, is now widely cultivated in many other parts of the world for production of olive oil and table olives. Olive is a rich source of valuable nutrients and bioactives of medicinal and therapeutic interest. Olive fruit contains appreciable concentration, 1–3% of fresh pulp weight, of hydrophilic (phenolic acids, phenolic alchohols, flavonoids and secoiridoids) and lipophilic (cresols) phenolic compounds that are known to possess multiple biological activities such as antioxidant, anticarcinogenic, antiinflammatory, antimicrobial, antihypertensive, antidyslipidemic, cardiotonic, laxative, and antiplatelet. Other important compounds present in olive fruit are pectin, organic acids, and pigments. Virgin olive oil (VOO), extracted mechanically from the fruit, is also very popular for its nutritive and health-promoting potential, especially against cardiovascular disorders due to the presence of high levels of monounsaturates and other valuable minor components such as phenolics, phytosterols, tocopherols, carotenoids, chlorophyll and squalene. The cultivar, area of production, harvest time, and the processing techniques employed are some of the factors shown to influence the composition of olive fruit and olive oil. This review focuses comprehensively on the nutrients and high-value bioactives profile as well as medicinal and functional aspects of different parts of olives and its byproducts. Various factors affecting the composition of this food commodity of medicinal value are also discussed.


Bioresource Technology | 2013

Degradation of veterinary antibiotics and hormone during broiler manure composting.

Yu Bin Ho; Mohamad Pauzi Zakaria; Puziah Abdul Latif; Nazamid Saari

The fate of nine veterinary antibiotics and one hormone in broiler manure during 40 days of composting was investigated. Results showed that composting can significantly reduce the concentration of veterinary antibiotics and hormone in broiler manure, making application of the post-compost manure safer for soil application. More than 99% of the nine antibiotics and one hormone involved in this study were removed from the manure during 40 days of composting. The target antibiotics and hormone showed short half-life in broiler manure composting, ranging from 1.3 to 3.8 days. The relationship between the physico-chemical properties of soil, manure and manure compost and its veterinary antibiotic and hormone concentration was statistically evaluated by Pearson correlation matrix. The concentration of veterinary antibiotics and hormone in manure compost was suggested to be affected by physico-chemical properties such as pH, temperature, total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP) and metal contents.


International Journal of Molecular Sciences | 2011

Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

Norshahida Mohamad Shofian; Azizah Abdul Hamid; Azizah Osman; Nazamid Saari; Farooq Anwar; Mohd Sabri Pak Dek; Muhammad Redzuan Hairuddin

The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.


Phytotherapy Research | 2012

Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals--a review.

Najla Gooda Sahib; Farooq Anwar; Anwarul Hassan Gilani; Azizah Abdul Hamid; Nazamid Saari; Khalid M. Alkharfy

Coriander (Coriandrum sativum L.), a herbal plant, belonging to the family Apiceae, is valued for its culinary and medicinal uses. All parts of this herb are in use as flavoring agent and/or as traditional remedies for the treatment of different disorders in the folk medicine systems of different civilizations. The plant is a potential source of lipids (rich in petroselinic acid) and an essential oil (high in linalool) isolated from the seeds and the aerial parts. Due to the presence of a multitude of bioactives, a wide array of pharmacological activities have been ascribed to different parts of this herb, which include anti‐microbial, anti‐oxidant, anti‐diabetic, anxiolytic, anti‐epileptic, anti‐depressant, anti‐mutagenic, anti‐inflammatory, anti‐dyslipidemic, anti‐hypertensive, neuro‐protective and diuretic. Interestingly, coriander also possessed lead‐detoxifying potential. This review focuses on the medicinal uses, detailed phytochemistry, and the biological activities of this valuable herb to explore its potential uses as a functional food for the nutraceutical industry. Copyright


Journal of Chromatography A | 2012

Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography–tandem mass spectrometry

Yu Bin Ho; Mohamad Pauzi Zakaria; Puziah Abdul Latif; Nazamid Saari

A multi-residue analytical method was developed to quantify nine antibiotics and one hormone in soil, broiler manure and manure compost. The developed method was based on ultrasonic extraction with MeOH:ACN:EDTA:McIlvaine buffer, solid phase extraction (SPE) using HLB (3 cc/60 mg) cartridge, followed by instrumental analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with 25 min total run time. It was validated and tested on soil, broiler manure and manure compost samples and showed that the method is able to simultaneously detect and quantify the target analytes with good selectivity and sensitivity. The developed method was linear in a concentration range from its instrumental quantification limit (IQL) to 500 ng/mL, with correlation coefficients higher than 0.999. The overall method performance was good for the majority of the analytes, with recoveries range from 63% to 121% in all the sample matrices. The method quantification limit (MQL) for the 10 target analytes in the soil, broiler manure and manure compost samples were 2-10, 3-16 and 5-15 μg/kg dry weight (DW), respectively. The method has also included tilmicosin, an antibiotic known to be reported in the environment for the first time. The developed method was then applied on broiler manure samples and its relative manure amended agricultural soil samples to identify and quantify veterinary antibiotic and hormone residues in the environment. These analytes were detected in broiler manure and soil samples, with maximum concentrations reaching up to 78516.1 μg/kg DW (doxycycline) and 1331.4 μg/kg DW (flumequine), respectively. The results showed that the method can potentially be adopted for the analysis of veterinary antibiotic and hormone wastes in solid environmental matrices.


Journal of the Science of Food and Agriculture | 2010

Effect of pre-germination time of brown rice on serum cholesterol levels of hypercholesterolaemic rats.

Shahin Roohinejad; Alireza Omidizadeh; Hamed Mirhosseini; Nazamid Saari; Shuhaimi Mustafa; Rokiah Mohd Yusof; Anis Shobirin Meor Hussin; Azizah Abdul Hamid; Mohd Yazid Abd Manap

BACKGROUND Brown rice is unpolished rice with immeasurable benefits for human health. Brown rice (BR) and pre-germinated brown rice (PGBR) are known to contain various functional compounds such as gamma-oryzanol, dietary fibre and gamma-aminobutyric acid (GABA). In the present study, the experimental diets containing BR and PGBR (24, 48 h pre-germination) were used to investigate the influence of pre-germination time of brown rice on blood cholesterol in Sprague-Dawley male rats. RESULTS Hypercholesterolaemia and elevation of LDL-cholesterol were successfully ameliorated by the experimental diets containing BR and PGBR (24 and 48 h pre-germination). As compared to the control sample, the pre-germination time had a significant (P < 0.05) effect on blood cholesterol of Sprague-Dawley male rats. It was also found that the significantly (P < 0.05) better effect on lipid profile of hypercholesterolaemic rats was observed by prolonging the pre-germination time. As compared to non-germinated brown rice, the germinated brown rice showed the higher cardio-protective effect on hypercholesterolaemic Sprague-Dawley male rats. CONCLUSION The present study suggests that the changes of blood cholesterol can be mainly modulated by using the PGBR rather than BR. The prolonging of pre-germination time led to an increase in the bioactive components, thereby providing a more efficient functional diet affecting the high blood cholesterol. This study suggests that PGBR can be used instead of BR and polished rice in the human diet.


International Journal of Molecular Sciences | 2012

Compositional Variation in Sugars and Organic Acids at Different Maturity Stages in Selected Small Fruits from Pakistan

Tahir Mahmood; Farooq Anwar; Mateen Abbas; Mary C. Boyce; Nazamid Saari

Selected soluble sugars and organic acids were analyzed in strawberry, sweet cherry, and mulberry fruits at different ripening stages by HPLC. The amounts of fructose, glucose and sucrose were found to be: strawberry (1.79–2.86, 1.79–2.25 and 0.01–0.25 g/100 g FW), sweet cherry (0.76–2.35, 0.22–3.39 and 0.03–0.13 g/100 g) and mulberry (3.07–9.41, 1.53–4.95 and 0.01–0.25 g/100 g) at un-ripened to fully-ripened stages, respectively. The strawberry, sweet cherry and mulberry mainly contained tartaric, citric and ascorbic acids in the range of 16–55, 70–1934 and 11–132 mg/100 g; 2–8, 2–10 and 10–17 mg/100 g; 2–118, 139–987 and 2–305 mg/100 g at un-ripened to fully-ripened stages, respectively. Fructose and glucose were established to be the major sugars in all the tested fruit while citric and ascorbic acid were the predominant organic acids in strawberry and mulberry while tartaric acid was mainly present in sweet cherry. The tested fruits mostly showed an increase in the concentration of sugars and organic acids with ripening.


Science of The Total Environment | 2014

Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia.

Yu Bin Ho; Mohamad Pauzi Zakaria; Puziah Abdul Latif; Nazamid Saari

Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices.


International Journal of Molecular Sciences | 2012

Effect of Maturity on Phenolics (Phenolic Acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan

Tahir Mahmood; Farooq Anwar; Mateen Abbas; Nazamid Saari

In this study, we investigated how the extent of ripeness affects the yield of extract, total phenolics, total flavonoids, individual flavonols and phenolic acids in strawberry and mulberry cultivars from Pakistan. In strawberry, the yield of extract (%), total phenolics (TPC) and total flavonoids (TFC) ranged from 8.5–53.3%, 491–1884 mg gallic acid equivalents (GAE)/100 g DW and 83–327 mg catechin equivalents (CE)/100 g DW, respectively. For the different species of mulberry the yield of extract (%), total phenolics and total flavonoids of 6.9–54.0%, 201–2287 mg GAE/100 g DW and 110–1021 mg CE/100 g DW, respectively, varied significantly as fruit maturity progressed. The amounts of individual flavonols and phenolic acid in selected berry fruits were analyzed by RP-HPLC. Among the flavonols, the content of myricetin was found to be high in Morus alba (88 mg/100 g DW), the amount of quercetin as high in Morus laevigata (145 mg/100 g DW) while kaempferol was highest in the Korona strawberry (98 mg/100 g DW) at fully ripened stage. Of the six phenolic acids detected, p-hydroxybenzoic and p-coumaric acid were the major compounds in the strawberry. M. laevigata and M. nigra contained p-coumaric acid and vanillic acid while M. macroura and M. alba contained p-hydroxy-benzoic acid and chlorogenic acid as the major phenolic acids. Overall, a trend to an increase in the percentage of extraction yield, TPC, TFC, flavonols and phenolic acids was observed as maturity progressed from un-ripened to fully-ripened stages.

Collaboration


Dive into the Nazamid Saari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azizah Osman

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammad Zarei

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Jamilah Bakar

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Son Radu

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Amin Ismail

Universiti Putra Malaysia

View shared research outputs
Researchain Logo
Decentralizing Knowledge