Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fatimah Abu Bakar is active.

Publication


Featured researches published by Fatimah Abu Bakar.


Molecules | 2011

Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L.

Mohsen Zargar; Azizah Abdul Hamid; Fatimah Abu Bakar; Mariana Nor Shamsudin; Kamyar Shameli; Fatemeh Jahanshiri; Farah Farahani

Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. One of the most important applications of Ag-NPs is their use as an anti-bacterial agent. The use of plants in the synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the biosynthesis of silver nanoparticles using Vitex negundo L. extract and its antimicrobial properties has been reported. The resulting silver particles are characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and UV–Visible (UV-Vis) spectroscopic techniques. The TEM study showed the formation of silver nanoparticles in the 10–30 nm range and average 18.2 nm in size. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The silver nanoparticles showed the antimicrobial activity against Gram positive and Gram negative bacteria. Vitex negundo L. was found to display strong potential for the synthesis of silver nanoparticles as antimicrobial agents by rapid reduction of silver ions (Ag+ to Ag0).


Journal of Experimental & Clinical Cancer Research | 2011

The association of Streptococcus bovis/gallolyticus with colorectal tumors: The nature and the underlying mechanisms of its etiological role

Ahmed Sahib Abdulamir; Rand Riadh Hafidh; Fatimah Abu Bakar

Streptococcus bovis (S. bovis) bacteria are associated with colorectal cancer and adenoma. S. bovis is currently named S. gallolyticus. 25 to 80% of patients with S. bovis/gallolyticus bacteremia have concomitant colorectal tumors. Colonic neoplasia may arise years after the presentation of bacteremia or infectious endocarditis of S. bovis/gallolyticus. The presence of S. bovis/gallolyticus bacteremia and/or endocarditis is also related to the presence of villous or tubular-villous adenomas in the large intestine. In addition, serological relationship of S. gallolyticus with colorectal tumors and direct colonization of S. gallolyticus in tissues of colorectal tumors were found. However, this association is still under controversy and has long been underestimated. Moreover, the etiological versus non-etiological nature of this associationis not settled yet. Therefore, by covering the most of up to date studies, this review attempts to clarify the nature and the core of S. bovis/gallolyicus association with colorectal tumors and analyze the possible underlying mechanisms.


Waste Management | 2013

Potential of chicken by-products as sources of useful biological resources.

Adeseye Lasekan; Fatimah Abu Bakar; Dzulkifly Mat Hashim

By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.


Molecular Cancer | 2010

Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8.

Ahmed Sahib Abdulamir; Rand Riadh Hafidh; Fatimah Abu Bakar

BackgroundColorectal cancer (CRC) has long been associated with bacteremia and/or endocarditis by Streptococcus gallolyticus member bacteria (SGMB) but the direct colonization of SGMB along with its molecular carcinogenic role, if any, has not been investigated. We assessed the colonization of SGMB in CRC patients with history of bacteremia (CRC-w/bac) and without history of bacteremia (CRC-wo/bac) by isolating SGMB from feces, mucosal surfaces of colorectum, and colorectal tissues and detecting SGMB DNA, via PCR and in situ hybridization (ISH) assays targeting SodA gene in colorectal tissues. Moreover, mRNA of IL1, IL-8, COX-2, IFN-γ, c-Myc, and Bcl-2 in colorectal tissues of studied groups was assessed via ISH and RT-PCR.ResultsSGMB were found to be remarkably isolated in tumorous (TU) and non-tumorous (NTU) tissues of CRC-w/bac, 20.5% and 17.3%, and CRC-wo/bac, 12.8% and 11.5%, respectively while only 2% of control tissues revealed SGMB (P < 0.05); such contrast was not found in mucosal and fecal isolation of SGMB. The positive detection of SGMB DNA in TU and NTU of CRC-w/bac and CRC-wo/bac via PCR, 48.7%, 35.9%, 32.7%, and 23%, respectively, and ISH, 46.1%, 30.7%, 28.8%, and 17.3%, respectively, was higher than in control tissues, 4 and 2%, respectively (P < 0.05). SGMB count measured via quantitative PCR of SGMB DNA in terms of copy number (CN), in TU and NTU of CRC-w/bac and CRC-wo/bac, 2.96-4.72, 1.29-2.81, 2.16-2.92, and 0.67-2.07 log10 CN/g respectively, showed higher colonization in TU than in NTU and in CRC-w/bac than in CRC-wo/bac (P < 0.05). The PCR-based mRNA ratio and ISH-based percentage of positively stained cells of IL-1, 1.77 and 70.3%, COX-2, 1.63 and 44.8%, and IL-8, 1.73 and 70.3%, respectively, rather than IFN-γ, c-Myc, and Bcl-2, were higher in SGMB positive patients than in control or SGMB negative patients (P < 0.05).ConclusionsThe current study indicated that colorectal cancer is remarkably associated with SGMB; moreover, molecular detection of SGMB in CRC was superior to link SGMB with CRC tumors highlighting a possible direct and active role of SGMB in CRC development through most probably inflammation-based sequel of tumor development or propagation via, but not limited to, IL-1, COX-2, and IL-8.


International Journal of Food Microbiology | 2011

Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation

Muhammad Zukhrufuz Zaman; Fatimah Abu Bakar; S. Jinap; Jamilah Bakar

Bacteria with amine oxidase activity have become a particular interest to reduce biogenic amines concentration in food products such as meat and fish sausages. However, little information is available regarding the application of these bacteria in fish sauce. Hence, our study was aimed to investigate the effect of such starter cultures in reducing biogenic amines accumulation during fish sauce fermentation. Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05 isolated from fish sauce which possess amine oxidase activity were used as starter cultures in this study. Fermentation was held for 120 days at 35 °C. The pH value increased in all samples, while salt concentration remained constant throughout fermentation. Aerobic bacteria count was significantly lower (p < 0.05) in the control than in inoculated samples as a result of starter cultures addition. However, it decreased during fermentation due to the growth inhibition by high salt concentration. Proteolytic bacterial count decreased during fermentation with no significant difference (p > 0.05) among samples. These bacteria hydrolyzed protein in anchovy to produce free amino acid precursors for amines formation by decarboxylase bacteria. The presence of biogenic amines producing bacteria in this study was considered to be indigenous from raw material or contamination during fermentation, since our cultures were negative histamine producers. Amino acid histidine, arginine, lysine and tyrosine concentration decreased at different rates during fermentation as they were converted into their respective amines. In general, biogenic amines concentration namely histamine, putrescine, cadaverine and tyramine increased throughout fermentation. However, their concentrations were markedly higher (p < 0.05) in the control (without starter cultures) as compared to the samples treated with starter cultures. Histamine concentration was reduced by 27.7% and 15.4% by Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively. Both cultures could also reduce other amines during fermentation. After 120 days of fermentation, the overall biogenic amines concentration was 15.9% and 12.5% less in samples inoculated with Staphylococcus carnosus FS19 and Bacillus amyloliquefaciens FS05, respectively, as compared to control samples. These findings emphasized that application of starter cultures with amines oxidase activity in fish sauce fermentation was found to be effective in reducing biogenic amines accumulation.


The Open Microbiology Journal | 2011

Inhibition of Growth of Highly Resistant Bacterial and Fungal Pathogens by a Natural Product

Rand Riadh Hafidh; Ahmed Sahib Abdulamir; Law Se Vern; Fatimah Abu Bakar; Faridah Abas; Fatemeh Jahanshiri; Zamberi Sekawi

The continuous escalation of resistant bacteria against a wide range of antibiotics necessitates discovering novel unconventional sources of antibiotics. B. oleracea L (red cabbage) is health-promoting food with proven anticancer and anti-inflammatory activities. However, it has not been researched adequately for its antimicrobial activity on potential resistant pathogens. The methanol crude extract of B. oleracea L. was investigated for a possible anti-microbial activity. The screening method was conducted using disc diffusion assay against 22 pathogenic bacteria and fungi. It was followed by evaluation of the minimum inhibitory concentration (MIC). Moreover, the antibacterial and the antifungal activities were confirmed using the minimum bactericidal concentration (MBC) and the minimum fungicidal concentration (MFC), respectively. Remarkable, antibacterial activity was evident particularly against highly infectious microorganisms such as Methicillin-resistant Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Salmonella enterica serovar Typhimurium as well as against human fungal pathogens, Trichophyton rubrum and Aspergillus terreus. Red cabbage is a rich source of phenolic compounds, anthocyanins being the most abundant class, which might explain its potent antimicrobial action. This extract is potentially novel for future antimicrobials, inexpensive, and readily available at a large scale for pharmaceutical companies for further investigation and processing.


American Journal of Applied Sciences | 2009

A Review: Microbiological, Physicochemical and Health Impact of High Level of Biogenic Amines in Fish Sauce

Muhammad Zukhrufuz Zaman; Ahmed Sahib Abdulamir; Fatimah Abu Bakar; Jinap Selamat; Jamilah Bakar

Problem statement: Biogenic amines are basic nitrogenous compounds present in a wide variety of foods and beverages. Their formations were mainly due to the amino acids decarboxylase activity of certain microorganisms. Excessive intake of biogenic amines could induce many undesirable physiological effects determined by their psychoactive and vasoactive action. Fish sauce which is considered as a good source of dietary protein, amino acids, vitamins and minerals was a popular condiment in Southeast Asian countries. However, it has also been reported that fish sauce contain high amount of amines. Hence, attention should be given to ensure the safety of this product. Approach: A review study was conducted to deliver an overview on the presence of biogenic amines in fish sauce and to discuss the important factors affecting their accumulation. Impact of amines on human health and efforts to reduce their accumulation in fish sauce were also discussed to give a comprehensive view. Results: Histamine, putrescine and cadaverine is the most abundant amines in fish sauce with maximum reported value of 1220, 1257 and 1429 ppm, respectively. Tyramine present in a lesser amount with maximum reported value of 1178 ppm. Other amines such as tryptamine, phenylethylamine, spermine and spermidine were considered as minor amines. However, different profiles of amines were reported in different type of products. This was depended on microbial flora, availability of precursors and physicochemical factors such as temperature, pH, salt, oxygen and sugar concentration. In synergistically supporting physicochemical factors, several microorganisms such as Enterobacteriaceae, Micrococci and Lactobacilli were responsible for biogenic amines formation in fish sauce. Conclusion: Since the formation of amines in fish sauce was a result of many factors, it was almost virtually impossible to control each factor during fermentation. Addition of amines degrading bacteria into fish sauce fermentation might be useful to prevent amines accumulation. Concomitantly, a good and hygienic manufacturing procedure will enhance the safety of fish sauce.


New Biotechnology | 2011

Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8.

Akanbi Taiwo Olusesan; Liyana Kamaruzaman Azura; Bita Forghani; Fatimah Abu Bakar; Abdul Karim Sabo Mohamed; Son Radu; Mohd Yazid Abdul Manap; Nazamid Saari

Thermostable lipase produced by a genotypically identified extremophilic Bacillus subtilis NS 8 was purified 500-fold to homogeneity with a recovery of 16% by ultrafiltration, DEAE-Toyopearl 650M and Sephadex G-75 column. The purified enzyme showed a prominent single band with a molecular weight of 45 kDa. The optimum pH and temperature for activity of lipase were 7.0 and 60°C, respectively. The enzyme was stable in the pH range between 7.0 and 9.0 and temperature range between 40 and 70°C. It showed high stability with half-lives of 273.38 min at 60°C, 51.04 min at 70°C and 41.58 min at 80°C. The D-values at 60, 70 and 80°C were 788.70, 169.59 and 138.15 min, respectively. The enzymes enthalpy, entropy and Gibbs free energy were in the range of 70.07-70.40 kJ mol(-1), -83.58 to -77.32 kJ mol(-1)K(-1) and 95.60-98.96 kJ mol(-1), respectively. Lipase activity was slightly enhanced when treated with Mg(2+) but there was no significant enhancement or inhibition of the activity with Ca(2+). However, other metal ions markedly inhibited its activity. Of all the natural vegetable oils tested, it had slightly higher hydrolytic activity on soybean oil compared to other oils. On TLC plate, the enzyme showed non-regioselective activity for triolein hydrolysis.


World Journal of Microbiology & Biotechnology | 2003

Screening and identification of extracellular lipase-producing thermophilic bacteria from a Malaysian hot spring

N. Sheikh Abdul Hamid; Hee B. Zen; Ong B. Tein; Yasin M. Halifah; Nazamid Saari; Fatimah Abu Bakar

Seven lipase-producing thermophilic bacteria (ST 1, ST 4, ST 6, ST 7, ST 8, ST 9 and ST 10) were isolated from the Setapak hot spring in Malaysia. The crude extracellular lipases recovered by ultrafiltration of cell-free culture supernatant were reacted in an olive oil mixture and their lipolytic activities were compared. Identification of the bacteria was carried out using the Biolog system and biochemical tests. Strain ST 7 that exhibited the highest lipolytic activity of 4.58 U/ml was identified as belonging to the Bacillus genus. Strain ST 6 with an activity of 3.51 U/ml, was identified as Ralstonia paucula. The lipolytic activities of strains ST 1, ST 4, ST 8, ST 9 and ST 10 were 2.39, 1.84, 2.38, 1.80 and 2.62 U/ml respectively. Strains ST 1, ST 4, and ST 10 were identified as Ralstonia paucula while strains ST 8 and ST 9 were Bacillus spp. Strains ST 7 and ST 9 were tentatively identified as Bacillus thermoglucosidasius, Bacillus stearothermophilus or Bacillus coagulans, whereas strain ST 8 was tentatively identified as Bacillus subtilis.


Bioelectrochemistry | 2010

Electrochemical DNA biosensor for the detection of specific gene related to Trichoderma harzianum species

Shafiquzzaman Siddiquee; Nor Azah Yusof; Abu Bakar Salleh; Fatimah Abu Bakar; Lee Yook Heng

A new electrochemical biosensor is described for voltammetric detection of gene sequence related to Trichoderma harzianum. The sensor involves immobilization of a 20 base single-stranded probe (ssDNA), which is complementary to a specific gene sequence related to T. harzianum on a gold electrode through specific adsorption. The DNA probe was used to determine the amount of target gene in solution using methylene blue (MB) as the electrochemical indicator. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the electrode. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE and the probe-modified AuE which localized to the affinity of MB. Control experiments with the non-complementary oligonucleotides were performed to assess whether the DNA biosensor responds selectively, via hybridization, to the target. DNA biosensor also able to detect microorganism at the species levels without nucleic acid amplification. The redox current was linearly related to the concentration of target oligonucleotide DNA, ranged from 1-20 ppm. Numerous factors, affecting the probe immobilization, target hybridization and indicator binding reactions are optimized to maximize the sensitivity and reduce the assay time.

Collaboration


Dive into the Fatimah Abu Bakar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nazamid Saari

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Nor Azah Yusof

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Son Radu

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamilah Bakar

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Jinap Selamat

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Lee Yook Heng

National University of Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge