Nazely Diban
University of Cantabria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nazely Diban.
Acta Biomaterialia | 2013
Nazely Diban; Suvi Haimi; Lydia A.M. Bolhuis-Versteeg; Sandra Teixeira; Susanna Miettinen; André A. Poot; Dirk W. Grijpma; Dimitrios Stamatialis
At present the manufacture of small-diameter blood vessels is one of the main challenges in the field of vascular tissue engineering. Currently available vascular grafts rapidly fail due to development of intimal hyperplasia and thrombus formation. Poly(lactic-co-glycolic acid) (PLGA) hollow fiber (HF) membranes have previously been proposed for this application, but as we show in the present work, they have an inhibiting effect on cell proliferation and rather poor mechanical properties. To overcome this we prepared HF membranes via phase inversion using blends of PLGA with poly(ε-caprolactone) (PCL). The influence of polymer composition on the HF physicochemical properties (topography, water transport and mechanical properties) and cell attachment and proliferation were studied. Our results show that only the ratio PCL/PLGA of 85/15 (PCL/PLGA85/15) yielded a miscible blend after processing. A higher PLGA concentration in the blend led to immiscible PCL/PLGA phase-separated HFs with an inhomogeneous morphology and variation in the cell culture results. In fact, the PCL/PLGA85/15 blend, which had the most homogeneous morphology and suitable pore structure, showed better human adipose stem cell (hASC) attachment and proliferation compared with the homopolymers. This, combined with the good mechanical and transport properties, makes them potentially useful for the development of small-caliber vascular grafts.
Journal of Hazardous Materials | 2011
Nazely Diban; Rosa Mediavilla; Ane Urtiaga; Inmaculada Ortiz
This work reports the feasibility of applying emulsion pertraction technology (EPT) aiming at zinc recovery and waste minimization in the zinc electroplating processes that include Cr (III) passivation. The assessment consists of firstly the lifetime extension of the passivation baths by selective removal of the tramp ions zinc and iron, and secondly, the recovery of zinc for further reuse. Spent passivation baths from a local industry were tested, being the major metallic content: Cr(3+) 9000mg L(-1), Zn(2+) 12,000mg L(-1), Fe(3+) 100mg L(-1). Working in a Liqui-Cel hollow fiber membrane contactor and using the extractant bis(2,4,4-trimethylpentyl) phosphinic acid, reduction of zinc and iron concentrations below 60mg L(-1) and 2mg L(-1), respectively were obtained, while trivalent chromium, the active metal that generates the passivation layer, was retained in the baths. Zinc was selectively transferred to an acidic stripping phase that in the experimental time reached a concentration of 157,000mg L(-1). Zinc recovery by electrowinning from the acidic stripping phase without any pretreatment of the electrolyte solution provided a purity of 98.5%, matching the lower commercial zinc grade. As a result of the extension of the life time of the passivation bath, significant environmental advantages are derived such as minimization of the volume of hazardous wastes and savings in the consumption of raw materials.
Journal of Hazardous Materials | 2018
Beatriz Gomez-Ruiz; Paula Ribao; Nazely Diban; Maria J. Rivero; Inmaculada Ortiz; Ane Urtiaga
The inherent resistance of perfluoroalkyl substances (PFASs) to biological degradation makes necessary to develop advanced technologies for the abatement of this group of hazardous substances. The present work investigated the photocatalytic decomposition of perfluorooctanoic acid (PFOA) using a composite catalyst based on TiO2 and reduced graphene oxide (95% TiO2/5% rGO) that was synthesized using a facile hydrothermal method. The efficient photoactivity of the TiO2-rGO (0.1gL-1) composite was confirmed for PFOA (0.24mmolL-1) degradation that reached 93±7% after 12h of UV-vis irradiation using a medium pressure mercury lamp, a great improvement compared to the TiO2 photocatalysis (24±11% PFOA removal) and direct photolysis (58±9%). These findings indicate that rGO provided the suited properties of TiO2-rGO, possibly as a result of acting as electron acceptor and avoiding the high recombination electron/hole pairs. The release of fluoride and the formation of shorter-chain perfluorocarboxilyc acids, that were progressively eliminated in a good match with the analysed reduction of total organic carbon, is consistent with a step-by-step PFOA decomposition via photogenerated hydroxyl radicals. Finally, the apparent first order rate constants of the TiO2-rGO UV-vis PFOA decompositions, and the intermediate perfluorcarboxylic acids were found to increase as the length of the carbon chain was shorter.
Membranes, 2018, 8(1), 12 | 2018
Sandra Sánchez-González; Nazely Diban; Ane Urtiaga
The present work studies the functional behavior of novel poly(ε-caprolactone) (PCL) membranes functionalized with reduced graphene oxide (rGO) nanoplatelets under simulated in vitro culture conditions (phosphate buffer solution (PBS) at 37 °C) during 1 year, in order to elucidate their applicability as scaffolds for in vitro neural regeneration. The morphological, chemical, and DSC results demonstrated that high internal porosity of the membranes facilitated water permeation and procured an accelerated hydrolytic degradation throughout the bulk pathway. Therefore, similar molecular weight reduction, from 80 kDa to 33 kDa for the control PCL, and to 27 kDa for PCL/rGO membranes, at the end of the study, was observed. After 1 year of hydrolytic degradation, though monomers coming from the hydrolytic cleavage of PCL diffused towards the PBS medium, the pH was barely affected, and the rGO nanoplatelets mainly remained in the membranes which envisaged low cytotoxic effect. On the other hand, the presence of rGO nanomaterials accelerated the loss of mechanical stability of the membranes. However, it is envisioned that the gradual degradation of the PCL/rGO membranes could facilitate cells infiltration, interconnectivity, and tissue formation.
Membranes | 2018
Nazely Diban; Beatriz Gomez-Ruiz; María Lázaro-Díez; José Ramos-Vivas; Inmaculada Ortiz; Ane Urtiaga
High porosity and mass transport properties of microfiltration polymeric membranes benefit nutrients supply to cells when used as scaffolds in interstitial perfusion bioreactors for tissue engineering. High nutrients transport is assumed when pore size and porosity of the membrane are in the micrometric range. The present work demonstrates that the study of membrane fouling by proteins present in the culture medium, though not done usually, should be included in the routine testing of new polymer membranes for this intended application. Two poly(ε-caprolactone) microfiltration membranes presenting similar average pore size (approximately 0.7 µm) and porosity (>80%) but different external surface porosity and pore size have been selected as case studies. The present work demonstrates that a membrane with lower surface pore abundance and smaller external pore size (approximately 0.67 µm), combined with adequate hydrodynamics and tangential flow filtration mode is usually more convenient to guarantee high flux of nutrients. On the contrary, having large external pore size (approximately 1.70 µm) and surface porosity would incur important internal protein fouling that could not be prevented with the operation mode and hydrodynamics of the perfusion system. Additionally, the use of glycerol in the drying protocols of the membranes might cause plasticization and a consequent reduction of mass transport properties due to membrane compaction by the pressure exerted to force perfusion. Therefore, preferentially, drying protocols that omit the use of plasticizing agents are recommended.
Macromolecular Bioscience | 2018
Sandra Sánchez-González; Nazely Diban; Fabio Bianchi; Hua Ye; Ane Urtiaga
The effect of doping graphene oxide (GO) and reduced graphene oxide (rGO) into poly(ε-caprolactone) (PCL) membranes prepared by solvent induced phase separation is evaluated in terms of nanomaterial distribution and compatibility with neural stem cell growth and functional differentiation. Raman spectra analyses demonstrate the homogeneous distribution of GO on the membrane surface while rGO concentration increases gradually toward the center of the membrane thickness. This behavior is associated with electrostatic repulsion that PCL exerted toward the polar GO and its affinity for the non-polar rGO. In vitro cell studies using human induced pluripotent cell derived neural progenitor cells (NPCs) show that rGO increases marker expression of NPCs differentiation with respect to GO (significantly to tissue culture plate (TCP)). Moreover, the distinctive nanomaterials distribution defines the cell-to-nanomaterial interaction on the PCL membranes: GO nanomaterials on the membrane surface favor higher number of active matured neurons, while PCL/rGO membranes present cells with significantly higher magnitude of neural activity compared to TCP and PCL/GO despite there being no direct contact of rGO with the cells on the membrane surface. Overall, this work evidences the important role of rGO electrical properties on the stimulation of neural cell electro-activity on PCL membrane scaffolds.
Journal of Membrane Science | 2009
Nazely Diban; Oana Cristina Voinea; Ane Urtiaga; Inmaculada Ortiz
Industrial & Engineering Chemistry Research | 2013
Nazely Diban; Andrés T. Aguayo; Javier Bilbao; Ane Urtiaga; Inmaculada Ortiz
Desalination | 2008
Nazely Diban; Ane Urtiaga; Inmaculada Ortiz
Journal of Membrane Science | 2013
Nazely Diban; Suvi Haimi; Lydia A.M. Bolhuis-Versteeg; Sandra Teixeira; Susanna Miettinen; André A. Poot; Dirk W. Grijpma; Dimitrios Stamatialis