Nazia Suleman
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nazia Suleman.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Shazia Raja; Nazia Suleman; Stephen G. Compton; Jamie C. Moore
Sex ratio strategies in species subject to local mate competition (LMC), and in particular their fit to quantitative theoretical predictions, provide insight into constraints upon adaptation. Pollinating fig wasps are widely used in such studies because their ecology resembles theory assumptions, but the cues used by foundresses to assess potential LMC have not previously been determined. We show that Liporrhopalum tentacularis females (foundresses) use their clutch size as a cue. First, we make use of species ecology (foundresses lay multiple clutches, with second clutches smaller than first) to show that increases in sex ratio in multi-foundress figs occur only when foundresses are oviposition site limited, i.e. that there is no direct response to foundress density. Second, we introduce a novel technique to quantify foundress oviposition sequences and show, consistent with the theoretical predictions concerning clutch size-only strategies, that they produce mainly male offspring at the start of bouts, followed by mostly females interspersed by a few males. We then discuss the implications of our findings for our understanding of the limits of the ability of natural selection to produce ‘perfect’ organisms, and for our understanding of when different cue use patterns evolve.
Biology Letters | 2012
Nazia Suleman; Shazia Raja; Stephen G. Compton
Male insects rarely collaborate with each other, but pollinator fig wasps (Hymenoptera: Agaonidae) are said to be an exception. Immature fig wasps feed on galled ovules located inside figs, the inflorescences of Ficus species (Moraceae). After mating, adult pollinator males chew communal exit-holes that allow mated females (which are often also their siblings) to escape. Figs also support non-pollinating fig wasps (NPFWs), some of which produce exit-holes independently. We determined whether collaboration between pollinator males (Kradibia tentacularis from Ficus montana) was necessary for the release of their females, and used the relationship between male numbers and likelihood of success to measure the extent of cooperation during exit-hole production. These attributes were then compared with those of an NPFW (Sycoscapter sp.) from the same host plant. Pollinators were more abundant than NPFW, but their more female-biased sex ratio meant male pollinator densities were only slightly higher. Individual males of both species could produce an exit-hole. Single males of the NPFW were just as successful as single male pollinators, but only male pollinators cooperated effectively, becoming more successful as their numbers increased. The lack of cooperation among NPFW may be linked to their earlier period of intense inter-male aggression.
Journal of Insect Behavior | 2012
Salah Ghana; Nazia Suleman; Stephen G. Compton
Pollinator fig wasps (Agaonidae) are a model system for studies of sex ratio evolution. They lay their eggs in galled ovules within figs. Only one adult emerges from each gall, suggesting that only one egg is always laid per ovule, but if double oviposition occurs then the assumption that adult (realised) sex ratios of fig wasps are representative of primary sex ratios may be violated. Many galls also fail to produce any wasps. If they initially contained eggs then differential mortality rates may also modify realized sex ratios. We investigated whether Kradibia (= Liporrhopalum) tentacularis foundresses in Ficus montana figs avoid laying in ovules that already contain eggs. Comparisons of oviposition frequencies and wasp emergence frequencies showed that most galls that failed to produce wasps will have had eggs laid in them, but few occupied ovules contained two eggs. Realised sex ratios therefore do not necessarily reflect primary sex ratios in this species, but double oviposition is not responsible.
Ecological Entomology | 2013
Nazia Suleman; Shazia Raja; Stephen G. Compton
Fig trees (Ficus) and their species‐specific pollinators (Agaonidae) represent a remarkable example of a coevolved mutualism. A number of non‐pollinating fig wasps (gallers and parasitoids, NPFW) are also an integral part of the mutualism, but have a negative impact on the reproductive success of the mutualists. Most NPFW belong to subfamilies only associated with figs and clearly have a long association with the plants and their pollinators. In the present study, the costs imposed by an undescribed parasitoid Sycoscapter sp. on its host pollinator Kradibia (= Liporrhopalum) tentacularis of a dioecious fig tree Ficus montana maintained under glasshouse conditions are described. It was asked whether pollinator numbers and sex ratios are changed by the presence or absence of parasitoids within individual figs. The effect of fig densities on parasitism rates at two spatial scales and within the general glasshouse population was also recorded. Parasitoid aggregation in relation to pollinator densities inside figs was also examined. Sycoscapter sp. significantly reduced the numbers of pollinators emerging from the figs, but host sex ratios were not distorted. The parasitoid showed host density independence at both spatial scales of fig densities, but targeted individual figs that contained higher initial densities of pollinators.
Ecological Entomology | 2011
Nazia Suleman; Shazia Raja; Yuan Zhang; Stephen G. Compton
1. Figs on male dioecious fig trees (Ficus, Moraceae) are breeding sites for pollinator fig wasps (Hymenoptera, Agaonidae), but figs on female plants are traps that produce only seeds. As the short‐lived fig wasps cannot reproduce in female figs, natural selection should favour individuals that avoid them. Several studies have failed to detect such discrimination, a result attributed to inter‐sexual mimicry and ‘selection to rush’ in the wasps, but their experiments failed to explicitly take into account fig age (how long they had been waiting to be pollinated).
Entomologia Experimentalis Et Applicata | 2013
Nazia Suleman; Shazia Raja; Rupert J. Quinnell; Stephen G. Compton
The interaction between figs (Ficus spp., Moraceae) and their pollinator fig wasps (Hymenoptera: Agaonidae) is an obligate mutualism, but females of dioecious fig trees exploit fig wasps without providing rewards. Figs are closed inflorescences that typically trap pollinator females after entry, but some fig wasp species can re‐emerge (although wingless) and subsequently oviposit in and pollinate further figs. Using glasshouse populations, we examined the sex ratios and clutches laid by single foundresses of Kradibia tentacularis (Grandi) in their first and subsequent male figs of Ficus montana Blume, and how the probability of emergence and entering a second fig varied between seasons. A maximum of four figs were entered by any one foundress. Wingless foundresses were able to locate and enter figs up to 60 cm from the first fig they entered, but the probability of entry declined sharply with distance from that fig. The foundresses that re‐emerged produced slightly higher adult offspring totals than those that failed to re‐emerge. Clutch sizes of a single foundress in its first fig equalled those in all the subsequent figs combined, with clutch size per fig decreasing when more figs were entered. Smaller clutches had less female‐biased sex ratios. Figs were more numerous in summer than in winter, but the proportion of figs entered by only wingless foundresses remained unchanged. Movement between figs increases pollinator reproductive success in male figs, thereby encouraging foundresses that encounter a female tree to also move between and pollinate several female figs.
Plant Systematics and Evolution | 2013
Nazia Suleman; Rupert J. Quinnell; Stephen G. Compton
The host-specific relationship between fig trees (Ficus) and their pollinator wasps (Agaonidae) is a classic case of obligate mutualism. Pollinators reproduce within highly specialised inflorescences (figs) of fig trees that depend on the pollinator offspring for the dispersal of their pollen. About half of all fig trees are functionally dioecious, with separate male and female plants responsible for separate sexual functions. Pollen and the fig wasps that disperse it are produced within male figs, whereas female figs produce only seeds. Figs vary greatly in size between different species, with female flower numbers varying from tens to many thousands. Within species, the number of female flowers present in each fig is potentially a major determinant of the numbers of pollinator offspring and seeds produced. We recorded variation in female flower numbers within male and female figs of the dioecious Ficus montana growing under controlled conditions, and assessed the sources and consequences of inflorescence size variation for the reproductive success of the plants and their pollinator (Kradibia tentacularis). Female flower numbers varied greatly within and between plants, as did the reproductive success of the plants, and their pollinators. The numbers of pollinator offspring in male figs and seeds in female figs were positively correlated with female flower numbers, but the numbers of male flowers and a parasitoid of the pollinator were not. The significant variation in flower number among figs produced by different individuals growing under uniform conditions indicates that there is a genetic influence on inflorescence size and that this character may be subject to selection.
Ecological Entomology | 2015
Salah Ghana; Nazia Suleman; Stephen G. Compton
1. Fig trees (Ficus spp.) and their host‐specific pollinator fig wasps (Agaonidae) are partners in an obligate mutualism. Receptive phase figs release specific volatiles to attract their pollinators, and this is generally effective in preventing pollinator species from entering figs of the wrong hosts.
Entomological Science | 2015
Shazia Raja; Nazia Suleman; Rupert J. Quinnell; Stephen G. Compton
Ficus and their species–specific pollinator fig wasps represent an obligate plant–insect mutualism, but figs also support a community of non‐pollinating fig wasps (NPFWs) that consist of phytophages and parasitoids or inquilines. We studied interactions between Kradibia tentacularis, the pollinator of a dioecious fig tree species Ficus montana, and an undescribed NPFW Sycoscapter sp. Members of Sycoscapter sp. oviposited 2–4 weeks after pollinator oviposition, when host larvae were present in the figs. No negative correlation was found between the numbers of the two wasp species emerging from figs in a semi‐natural population. However, in experiments where the numbers of pollinator foundresses entering a fig were controlled, Sycoscapter sp. significantly reduced the numbers of pollinator offspring. Consequently, it can be concluded that Sycoscapter sp. is a parasitoid of K. tentacularis (which may also feed on plant tissue). Sycoscapter females concentrate their oviposition in figs that contain more potential hosts, rendering invalid conclusions based on simple correlations of host and natural enemy numbers.
Entomologia Experimentalis Et Applicata | 2015
Salah Ghana; Nazia Suleman; Stephen G. Compton
Figs (Moraceae) and pollinator fig wasps (Hymenoptera: Agaonidae) have a highly specific mutualistic relationship but fig wasps occasionally enter atypical hosts, and this can lead to hybrid fig trees and the potential for gene flow between species. Many fig trees are dioecious, with fig wasp offspring developing in galled ovules inside figs on male trees, whereas seeds develop only in figs on female trees. We generated experimental hybrids between the Asian Ficus montana Blume and a closely related African species Ficus asperifolia Miquel. Male F1s were sterile if entered by Kradibia tentacularis (Grandi) (Agaonidae), the pollinator of F. montana, because its offspring always failed to develop, without ovule enlargement. As with the F1s, figs on most male backcross plants [F. montana × (F. montana × F. asperifolia)] also aborted shortly after pollinator entry, resulting in a higher turnover of figs than with F. montana, although the times taken for the figs to reach receptivity were similar. Pollinator larvae nonetheless consistently managed to develop inside the figs of one backcross plant and also occasionally in a few figs from another backcross individual. In these figs, galled ovules developed as normal, whereas in figs that aborted the galled ovules failed to enlarge. The sex ratio of K. tentacularis progeny in the backcross figs was female biased and did not differ from that in F. montana figs. Sycoscapter spec. (Hymenoptera: Pteromalidae), a parasitoid of K. tentacularis, was able to lay eggs and developed normally inside male backcross figs where its host was present.