Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jenny Douglas is active.

Publication


Featured researches published by Jenny Douglas.


Nature Genetics | 2004

Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B

Sandra Hanks; Kim Coleman; Sarah Reid; Alberto Plaja; Helen V. Firth; David Fitzpatrick; Alexa Kidd; Károly Méhes; Richard Nash; Nathanial Robin; Nora Shannon; John Tolmie; John Swansbury; Alexandre Irrthum; Jenny Douglas; Nazneen Rahman

Mosaic variegated aneuploidy is a rare recessive condition characterized by growth retardation, microcephaly, childhood cancer and constitutional mosaicism for chromosomal gains and losses. In five families with mosaic variegated aneuploidy, including two with embryonal rhabdomyosarcoma, we identified truncating and missense mutations of BUB1B, which encodes BUBR1, a key protein in the mitotic spindle checkpoint. These data are the first to relate germline mutations in a spindle checkpoint gene with a human disorder and strongly support a causal link between aneuploidy and cancer development.


American Journal of Human Genetics | 2003

NSD1 Mutations Are the Major Cause of Sotos Syndrome and Occur in Some Cases of Weaver Syndrome but Are Rare in Other Overgrowth Phenotypes

Jenny Douglas; Sandra Hanks; I. Karen Temple; Sally Davies; Alexandra Murray; Meena Upadhyaya; Susan Tomkins; Helen E. Hughes; R.P. Trevor Cole; Nazneen Rahman

Sotos syndrome is a childhood overgrowth syndrome characterized by a distinctive facial appearance, height and head circumference >97th percentile, advanced bone age, and developmental delay. Weaver syndrome is characterized by the same criteria but has its own distinctive facial gestalt. Recently, a 2.2-Mb chromosome 5q35 microdeletion, encompassing NSD1, was reported as the major cause of Sotos syndrome, with intragenic NSD1 mutations identified in a minority of cases. We evaluated 75 patients with childhood overgrowth, for intragenic mutations and large deletions of NSD1. The series was phenotypically scored into four groups, prior to the molecular analyses: the phenotype in group 1 (n=37) was typical of Sotos syndrome; the phenotype in group 2 (n=13) was Sotos-like but with some atypical features; patients in group 3 (n=7) had Weaver syndrome, and patients in group 4 (n=18) had an overgrowth condition that was neither Sotos nor Weaver syndrome. We detected three deletions and 32 mutations (13 frameshift, 8 nonsense, 2 splice-site, and 9 missense) that are likely to impair NSD1 functions. The truncating mutations were spread throughout NSD1, but there was evidence of clustering of missense mutations in highly conserved functional domains between exons 13 and 23. There was a strong correlation between presence of an NSD1 alteration and clinical phenotype, in that 28 of 37 (76%) patients in group 1 had NSD1 mutations or deletions, whereas none of the patients in group 4 had abnormalities of NSD1. Three patients with Weaver syndrome had NSD1 mutations, all between amino acids 2142 and 2184. We conclude that intragenic mutations of NSD1 are the major cause of Sotos syndrome and account for some Weaver syndrome cases but rarely occur in other childhood overgrowth phenotypes.


Journal of Medical Genetics | 2011

DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome

Ingrid Slade; Chiara Bacchelli; Helen Davies; Anne Murray; Fatemeh Abbaszadeh; Sandra Hanks; Rita Barfoot; Amos Burke; Julia Chisholm; Martin Hewitt; Helen Jenkinson; Derek J. King; Bruce Morland; Barry Pizer; Katrina Prescott; Anand Saggar; Lucy Side; Heidi Traunecker; Sucheta Vaidya; Paul Ward; P. Andrew Futreal; Gordan Vujanic; Andrew G. Nicholson; Nj Sebire; Clare Turnbull; John R. Priest; Kathryn Pritchard-Jones; Richard S. Houlston; Charles Stiller; Michael R. Stratton

Background Constitutional DICER1 mutations were recently reported to cause familial pleuropulmonary blastoma (PPB). Aim To investigate the contribution and phenotypic spectrum of constitutional and somatic DICER1 mutations to cancer. Methods and results The authors sequenced DICER1 in constitutional DNA from 823 unrelated patients with a variety of tumours and in 781 cancer cell lines. Constitutional DICER1 mutations were identified in 19 families including 11/14 with PPB, 2/3 with cystic nephroma, 4/7 with ovarian Sertoli–Leydig-type tumours, 1/243 with Wilms tumour (this patient also had a Sertoli–Leydig tumour), 1/1 with intraocular medulloepithelioma (this patient also had PPB), 1/86 with medulloblastoma/infratentorial primitive neuroectodermal tumour, and 1/172 with germ cell tumour. The inheritance was investigated in 17 families. DICER1 mutations were identified in 25 relatives: 17 were unaffected, one mother had ovarian Sertoli–Leydig tumour, one half-sibling had cystic nephroma, and six relatives had non-toxic thyroid cysts/goitre. Analysis of eight tumours from DICER1 mutation-positive patients showed universal retention of the wild-type allele. DICER1 truncating mutations were identified in 4/781 cancer cell lines; all were in microsatellite unstable lines and therefore unlikely to be driver mutations. Conclusion Constitutional DICER1 haploinsufficiency predisposes to a broad range of tumours, making a substantial contribution to PPB, cystic nephroma and ovarian Sertoli–Leydig tumours, but a smaller contribution to other tumours. Most mutation carriers are unaffected, indicating that tumour risk is modest. The authors define the clinical contexts in which DICER1 mutation testing should be considered, the associated tumour risks, and the implications for at-risk individuals. They have termed this condition ‘DICER1 syndrome’. Accession numbers The cDNA Genbank accession number for the DICER1 sequence reported in this paper is NM_030621.2.


American Journal of Human Genetics | 2003

Mutations in the Gene Encoding Capillary Morphogenesis Protein 2 Cause Juvenile Hyaline Fibromatosis and Infantile Systemic Hyalinosis

Sandra Hanks; Sarah Adams; Jenny Douglas; Laura Arbour; David J. Atherton; Sevim Balci; Harald Bode; Mary E. Campbell; Murray Feingold; Gokhan Keser; Wim J. Kleijer; Grazia M.S. Mancini; John A. McGrath; Francesco Muntoni; Arti Nanda; M. Dawn Teare; Matthew L. Warman; F. Michael Pope; Andrea Superti-Furga; P. Andrew Futreal; Nazneen Rahman

Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are autosomal recessive conditions characterized by multiple subcutaneous skin nodules, gingival hypertrophy, joint contractures, and hyaline deposition. We previously mapped the gene for JHF to chromosome 4q21. We now report the identification of 15 different mutations in the gene encoding capillary morphogenesis protein 2 (CMG2) in 17 families with JHF or ISH. CMG2 is a transmembrane protein that is induced during capillary morphogenesis and that binds laminin and collagen IV via a von Willebrand factor type A (vWA) domain. Of interest, CMG2 also functions as a cellular receptor for anthrax toxin. Preliminary genotype-phenotype analyses suggest that abrogation of binding by the vWA domain results in severe disease typical of ISH, whereas in-frame mutations affecting a novel, highly conserved cytoplasmic domain result in a milder phenotype. These data (1) demonstrate that JHF and ISH are allelic conditions and (2) implicate perturbation of basement-membrane matrix assembly as the cause of the characteristic perivascular hyaline deposition seen in these conditions.


Nature | 2012

Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer

Elise Ruark; Katie Snape; Peter Humburg; Chey Loveday; Ilirjana Bajrami; Rachel Brough; Daniel Nava Rodrigues; Anthony Renwick; Sheila Seal; Emma Ramsay; Silvana Del Vecchio Duarte; Manuel A. Rivas; Margaret Warren-Perry; Anna Zachariou; Adriana Campion-Flora; Sandra Hanks; Anne Murray; Naser Ansari Pour; Jenny Douglas; Lorna Gregory; Andrew J. Rimmer; Neil Walker; Tsun-Po Yang; Julian Adlard; Julian Barwell; Jonathan Berg; Angela F. Brady; Carole Brewer; G Brice; Cyril Chapman

Improved sequencing technologies offer unprecedented opportunities for investigating the role of rare genetic variation in common disease. However, there are considerable challenges with respect to study design, data analysis and replication. Using pooled next-generation sequencing of 507 genes implicated in the repair of DNA in 1,150 samples, an analytical strategy focused on protein-truncating variants (PTVs) and a large-scale sequencing case–control replication experiment in 13,642 individuals, here we show that rare PTVs in the p53-inducible protein phosphatase PPM1D are associated with predisposition to breast cancer and ovarian cancer. PPM1D PTV mutations were present in 25 out of 7,781 cases versus 1 out of 5,861 controls (P = 1.12 × 10−5), including 18 mutations in 6,912 individuals with breast cancer (P = 2.42 × 10−4) and 12 mutations in 1,121 individuals with ovarian cancer (P = 3.10 × 10−9). Notably, all of the identified PPM1D PTVs were mosaic in lymphocyte DNA and clustered within a 370-base-pair region in the final exon of the gene, carboxy-terminal to the phosphatase catalytic domain. Functional studies demonstrate that the mutations result in enhanced suppression of p53 in response to ionizing radiation exposure, suggesting that the mutant alleles encode hyperactive PPM1D isoforms. Thus, although the mutations cause premature protein truncation, they do not result in the simple loss-of-function effect typically associated with this class of variant, but instead probably have a gain-of-function effect. Our results have implications for the detection and management of breast and ovarian cancer risk. More generally, these data provide new insights into the role of rare and of mosaic genetic variants in common conditions, and the use of sequencing in their identification.


Oncogene | 1998

Homozygous deletions at 3p12 in breast and lung cancer

Vasi Sundaresan; Grace Chung; Amanda Heppell-Parton; J Xiong; Catherine Grundy; Ian Roberts; Louise A James; Anthony Cahn; Anthony Bench; Jenny Douglas; John D. Minna; Yoshitaka Sekido; Michael I. Lerman; Farida Latif; Jonas Bergh; Hua Li; Nick Lowe; Donald J. Ogilvie; Pamela Rabbitts

We have constructed a physical map of the region homozygously deleted in the U2020 cell line at 3p12, including the location of putative CpG islands. Adjacent to one of these islands, we have identified and cloned a new gene (DUTT1) and used probes from this gene to detect two other homozygous deletions occurring in lung and breast carcinomas: the smallest deletion is within the gene itself and would result in a truncated protein. The DUTT1 gene is a member of the neural cell adhesion molecule family, although its widespread expression suggests it plays a less specialized role compared to other members of the family.


Nature Genetics | 2008

Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor

Richard H. Scott; Jenny Douglas; Linda Baskcomb; Nikki Huxter; Karen Barker; Sandra Hanks; Alan W. Craft; Mary Gerrard; Janice Kohler; Gill Levitt; Sue Picton; Barry Pizer; Milind Ronghe; Denise Williams; Jackie Cook; Pascal Pujol; Eamonn R. Maher; Jillian M Birch; Charles Stiller; Kathy Pritchard-Jones; Nazneen Rahman

Constitutional abnormalities at the imprinted 11p15 growth regulatory region cause syndromes characterized by disordered growth, some of which include a risk of Wilms tumor. We explored their possible contribution to nonsyndromic Wilms tumor and identified constitutional 11p15 abnormalities in genomic lymphocyte DNA from 13 of 437 individuals (3%) with sporadic Wilms tumor without features of growth disorders, including 12% of bilateral cases (P = 0.001) and in one familial Wilms tumor pedigree. No abnormality was detected in 220 controls (P = 0.006). Abnormalities identified included H19 DMR epimutations, uniparental disomy 11p15 and H19 DMR imprinting center mutations (one microinsertion and one microdeletion), thus identifying microinsertion as a new class of imprinting center mutation. Our data identify constitutional 11p15 defects as one of the most common known causes of Wilms tumor, provide mechanistic insights into imprinting disruption and reveal clinically important epigenotype-phenotype associations. The impact on clinical management dictates that constitutional 11p15 analysis should be considered in all individuals with Wilms tumor.


Nature Genetics | 2011

Mutations in CEP57 cause mosaic variegated aneuploidy syndrome

Katie Snape; Sandra Hanks; Elise Ruark; Patricio Barros-Núñez; Anna Elliott; Anne Murray; Andrew H Lane; Nora Shannon; Patrick Callier; David Chitayat; Jill Clayton-Smith; David Fitzpatrick; David Gisselsson; Sébastien Jacquemont; Keiko Asakura-Hay; Mark Micale; John Tolmie; Peter D. Turnpenny; Michael Wright; Jenny Douglas; Nazneen Rahman

Using exome sequencing and a variant prioritization strategy that focuses on loss-of-function variants, we identified biallelic, loss-of-function CEP57 mutations as a cause of constitutional mosaic aneuploidies. CEP57 is a centrosomal protein and is involved in nucleating and stabilizing microtubules. Our findings indicate that these and/or additional functions of CEP57 are crucial for maintaining correct chromosomal number during cell division.


Journal of Medical Genetics | 2007

Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) robustly detects and distinguishes 11p15 abnormalities associated with overgrowth and growth retardation

Richard H. Scott; Jenny Douglas; Linda Baskcomb; A. O Nygren; Jillian M Birch; Trevor Cole; Cormier-Daire; D. M Eastwood; S Garcia-Minaur; P Lupunzina; Katrina Tatton-Brown; Jet Bliek; Eamonn R. Maher; Nazneen Rahman

Background: A variety of abnormalities have been demonstrated at chromosome 11p15 in individuals with overgrowth and growth retardation. The identification of these abnormalities is clinically important but often technically difficult. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) is a simple but effective technique able to identify and differentiate methylation and copy number abnormalities, and thus is potentially well suited to the analysis of 11p15. Aims: To customise and test an MS-MLPA assay capable of detecting and distinguishing the full spectrum of known 11p15 epigenetic and copy number abnormalities associated with overgrowth and growth retardation and to assess its effectiveness as a first line investigation of these abnormalities. Methods: Five synthetic probe pairs were designed to extend the range of abnormalities detectable with a commercially available MS-MLPA assay. To define the normal values, 75 normal control samples were analysed using the customised assay. The assay was then used to analyse a “test set” of 24 normal and 27 abnormal samples, with data analysed by two independent blinded observers. The status of all abnormal samples was confirmed by a second technique. Results: The MS-MLPA assay gave reproducible, accurate methylation and copy number results in the 126 samples assayed. The blinded observers correctly identified and classified all 51 samples in the test set. Conclusions: MS-MLPA robustly and sensitively detects and distinguishes epigenetic and copy number abnormalities at 11p15 and is an effective first line investigation of 11p15 in individuals with overgrowth or growth retardation.


Nature Genetics | 2007

Mutations in RNF135, a gene within the NF1 microdeletion region, cause phenotypic abnormalities including overgrowth

Jenny Douglas; Deirdre Cilliers; Kim Coleman; Katrina Tatton-Brown; Karen Barker; Brigitte Bernhard; John Burn; Susan M. Huson; Dragana Josifova; Didier Lacombe; Mohsin Malik; Sahar Mansour; Evan Reid; Valérie Cormier-Daire; Trevor Cole; Nazneen Rahman

17q11 microdeletions that encompass NF1 cause 5%–10% of cases of neurofibromatosis type 1, and individuals with microdeletions are typically taller than individuals with intragenic NF1 mutations, suggesting that deletion of a neighboring gene might promote human growth. We identified mutations in RNF135, which is within the NF1 microdeletion region, in six families characterized by overgrowth, learning disability, dysmorphic features and variable additional features. These data identify RNF135 as causative of a new overgrowth syndrome and demonstrate that RNF135 haploinsufficiency contributes to the phenotype of NF1 microdeletion cases.

Collaboration


Dive into the Jenny Douglas's collaboration.

Top Co-Authors

Avatar

Nazneen Rahman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Sandra Hanks

The Royal Marsden NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Anne Murray

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Trevor Cole

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Karen Temple

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Elise Ruark

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ingrid Slade

The Royal Marsden NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge