Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neal J. Turner is active.

Publication


Featured researches published by Neal J. Turner.


The Astrophysical Journal | 2004

ANGULAR MOMENTUM TRANSPORT BY MAGNETOHYDRODYNAMIC TURBULENCE IN ACCRETION DISKS: GAS PRESSURE DEPENDENCE OF THE SATURATION LEVEL OF THE MAGNETOROTATIONAL INSTABILITY

Takayoshi Sano; Shu-ichiro Inutsuka; Neal J. Turner; James M. Stone

The saturation level of the magnetorotational instability (MRI) is investigated using three-dimensional MHD simulations. The shearing box approximation is adopted and the vertical component of gravity is ignored, so that the evolution of the MRI is followed in a small local part of the disk. We focus on the dependence of the saturation level of the stress on the gas pressure, which is a key assumption in the standard α disk model. From our numerical experiments we find that there is a weak power-law relation between the saturation level of the Maxwell stress and the gas pressure in the nonlinear regime; the higher the gas pressure, the larger the stress. Although the power-law index depends slightly on the initial field geometry, the relationship between stress and gas pressure is independent of the initial field strength and is unaffected by ohmic dissipation if the magnetic Reynolds number is at least 10. The relationship is the same in adiabatic calculations, where pressure increases over time, and nearly isothermal calculations, where pressure varies little with time. Over the entire region of parameter space explored, turbulence driven by the MRI has many characteristic ratios such as that of the Maxwell stress to the magnetic pressure. We also find that the amplitudes of the spatial fluctuations in density and the time variability in the stress are characterized by the ratio of magnetic pressure to gas pressure in the nonlinear regime. Our numerical results are qualitatively consistent with an idea that the saturation level of the MRI is determined by a balance between the growth of the MRI and the dissipation of the field through reconnection. The quantitative interpretation of the pressure-stress relation, however, may require advances in the theoretical understanding of nonsteady magnetic reconnection.


The Astrophysical Journal | 2005

Relativistic accretion disk models of high-state black hole X-ray binary spectra

Shane W. Davis; Omer Blaes; Ivan Hubeny; Neal J. Turner

We present calculations of non-LTE, relativistic accretion disk models applicable to the high/soft state of black hole X-ray binaries. We include the effects of thermal Comptonization and bound-free and free-free opacities of all abundant ion species. Taking into account the relativistic propagation of photons from the local disk surface to an observer at infinity, we present spectra calculated for a variety of accretion rates, black hole spin parameters, disk inclinations, and stress prescriptions. We also consider nonzero inner torques on the disk and explore different vertical dissipation profiles, including some that are motivated by recent radiation magnetohydrodynamic (MHD) simulations of magnetorotational turbulence. Bound-free metal opacity generally produces significantly less spectral hardening than previous models that only considered Compton scattering and free-free opacity. We find that the resulting effective photosphere usually lies at a small fraction of the total column depth, producing spectra that are remarkably independent of the stress prescription and vertical structure assumptions. We provide detailed comparisons between our models and the widely used multicolor disk model. Frequency-dependent discrepancies exist that may affect the parameters of other spectral components when this simpler disk model is used to fit modern X-ray data. For a given source, our models predict that the luminosity in the high/soft state should approximately scale with the fourth power of the empirically inferred maximum temperature, but with a slight hardening at high luminosities. This is in good agreement with observations.


The Astrophysical Journal | 2007

Turbulent Mixing and the Dead Zone in Protostellar Disks

Neal J. Turner; Takayoshi Sano; N. Dziourkevitch

We investigate the conditions for the presence of a magnetically inactive dead zone in protostellar disks using three-dimensional shearing-box MHD calculations, including vertical stratification, ohmic resistivity, and time-dependent ionization chemistry. Activity driven by the magneto-rotational instability fills the whole thickness of the disk at 5 AU, provided cosmic-ray ionization is present, small grains are absent, and the gas-phase metal abundance is sufficiently high. At 1 AU, the larger column density of 1700 g cm-2 means the midplane is shielded from ionizing particles and remains magneto-rotationally stable, even under the most favorable conditions considered. Nevertheless, the dead zone is effectively eliminated. Turbulence mixes free charges into the interior as they recombine, leading to a slight coupling of the midplane gas to the magnetic fields. Weak, large-scale radial fields diffuse to the midplane, where they are sheared out to produce stronger azimuthal fields. On average, the resulting midplane accretion stresses are just a few times less than in the surface layers.


Astrophysical Journal Supplement Series | 2001

A Module for Radiation Hydrodynamic Calculations with ZEUS-2D Using Flux-limited Diffusion

Neal J. Turner; James M. Stone

A module for the ZEUS-2D code is described that may be used to solve the equations of radiation hydrodynamics to order unity in v/c, in the flux-limited diffusion (FLD) approximation. In this approximation, the factor Eddington tensor f, which closes the radiation moment equations, is chosen to be an empirical function of the radiation energy density. This is easier to implement and faster than full-transport techniques, in which f is computed by solving the transfer equation. However, FLD is less accurate when the flux has a component perpendicular to the gradient in radiation energy density and in optically thin regions when the radiation field depends strongly on angle. The material component of the fluid is here assumed to be in local thermodynamic equilibrium. The energy equations are operator split, with transport terms, radiation diffusion term, and other source terms evolved separately. Transport terms are applied using the same consistent transport algorithm as in ZEUS-2D. The radiation diffusion term is updated using an alternating direction-implicit method with convergence checking. Remaining source terms are advanced together implicitly using numerical root finding. However, when absorption opacity is zero, accuracy is improved by instead treating the compression and expansion source terms using a time-centered differencing scheme. Results are discussed for test problems including radiation-damped linear waves, radiation fronts propagating in optically thin media, subcritical and supercritical radiating shocks, and an optically thick shock in which radiation dominates downstream pressure.


The Astrophysical Journal | 2008

Dead Zone Accretion Flows in Protostellar Disks

Neal J. Turner; T. Sano

Planets form inside protostellar disks in a dead zone where the electrical resistivity of the gas is too high for magnetic forces to drive turbulence. We show that much of the dead zone nevertheless is active and flows toward the star while smooth, large-scale magnetic fields transfer the orbital angular momentum radially outward. Stellar X-ray and radionuclide ionization sustain a weak coupling of the dead zone gas to the magnetic fields, despite the rapid recombination of free charges on dust grains. Net radial magnetic fields are generated in the magnetorotational turbulence in the electrically conducting top and bottom surface layers of the disk, and reach the midplane by ohmic diffusion. A toroidal component to the fields is produced near the midplane by the orbital shear. The process is similar to the magnetization of the solar tachocline. The result is a laminar, magnetically driven accretion flow in the region where the planets form.


The Astrophysical Journal | 2015

GLOBAL SIMULATIONS OF PROTOPLANETARY DISKS WITH OHMIC RESISTIVITY AND AMBIPOLAR DIFFUSION

Oliver Gressel; Neal J. Turner; Richard P. Nelson; Colin P. McNally

Protoplanetary disks are believed to accrete onto their central T Tauri star because of magnetic stresses. Recently published shearing box simulations indicate that Ohmic resistivity, ambipolar diffusion and the Hall effect all play important roles in disk evolution. In the presence of a vertical magnetic field, the disk remains laminar between 1-5au, and a magnetocentrifugal disk wind forms that provides an important mechanism for removing angular momentum. Questions remain, however, about the establishment of a true physical wind solution in the shearing box simulations because of the symmetries inherent in the local approximation. We present global MHD simulations of protoplanetary disks that include Ohmic resistivity and ambipolar diffusion, where the time-dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization with a simplified recombination chemistry. Our results show that the disk remains laminar, and that a physical wind solution arises naturally in global disk models. The wind is sufficiently efficient to explain the observed accretion rates. Furthermore, the ionization fraction at intermediate disk heights is large enough for magneto-rotational channel modes to grow and subsequently develop into belts of horizontal field. Depending on the ionization fraction, these can remain quasi-global, or break-up into discrete islands of coherent field polarity. The disk models we present here show a dramatic departure from our earlier models including Ohmic resistivity only. It will be important to examine how the Hall effect modifies the evolution, and to explore the influence this has on the observational appearance of such systems, and on planet formation and migration.


The Astrophysical Journal | 2011

TURBULENCE AND STEADY FLOWS IN THREE-DIMENSIONAL GLOBAL STRATIFIED MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETION DISKS

Mario Flock; Natalia Dzyurkevich; Hubert Klahr; Neal J. Turner; Th. Henning

We present full 2π global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and a magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.


The Astrophysical Journal | 2010

Dust Transport in Protostellar Disks Through Turbulence and Settling

Neal J. Turner; Augusto Carballido; T. Sano

We apply ionization balance and magnetohydrodynamical (MHD) calculations to investigate whether magnetic activity moderated by recombination on dust grains can account for the mass accretion rates and the mid-infrared spectra and variability of protostellar disks. The MHD calculations use the stratified shearing-box approach and include grain settling and the feedback from the changing dust abundance on the resistivity of the gas. The two-decade spread in accretion rates among solar-mass T Tauri stars is too large to result solely from variations in the grain size and stellar X-ray luminosity, but can plausibly be produced by varying these parameters together with the disk magnetic flux. The diverse shapes and strengths of the mid-infrared silicate bands can come from the coupling of grain settling to the distribution of the magnetorotational turbulence, through the following three effects. First, recombination on grains 1 μm or smaller yields a magnetically inactive dead zone extending more than two scale heights from the midplane, while turbulent motions in the magnetically active disk atmosphere overshoot the dead zone boundary by only about one scale height. Second, grains deep in the dead zone oscillate vertically in wave motions driven by the turbulent layer above, but on average settle at the rates found in laminar flow, so that the interior of the dead zone is a particle sink and the disk atmosphere will become dust-depleted unless resupplied from elsewhere. Third, with sufficient depletion, the dead zone is thinner and mixing dredges grains off the midplane. The last of these processes enables evolutionary signatures such as the degree of settling to sometimes decrease with age. The MHD results also show that the magnetic activity intermittently lifts clouds of small grains into the atmosphere. Consequently the photosphere height changes by up to one-third over timescales of a few orbits, while the extinction along lines of sight grazing the disk surface varies by factors of 2 over times down to a tenth of an orbit. We suggest that the changing shadows cast by the dust clouds on the outer disk are a cause of the daily to monthly mid-infrared variability found in many young stars.


Icarus | 2009

Ice lines, planetesimal composition and solid surface density in the solar nebula

Sarah E. Dodson-Robinson; Karen Willacy; Peter Bodenheimer; Neal J. Turner; Charles A. Beichman

Abstract To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2–3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, which includes not just water but methane, ammonia, CO and 54 minor ices, we calculate the solid surface density of a possible giant planet-forming solar nebula as a function of heliocentric distance and time. Our results can be used to provide the starting planetesimal surface density and evolving solar nebula conditions for core accretion simulations, or to predict the composition of planetesimals as a function of radius. We find three effects that favor giant planet formation by the core accretion mechanism: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) the fact that the ammonia and water ice lines should coincide, according to recent lab results from Collings et al. [Collings, M.P., Anderson, M.A., Chen, R., Dever, J.W., Viti, S., Williams, D.A., McCoustra, M.R.S., 2004. Mon. Not. R. Astron. Soc. 354, 1133–1140], and (3) the presence of a substantial amount of methane ice in the trans-saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62–85] by a factor of 3–4 throughout the trans-saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments.


The Astrophysical Journal | 2003

Local Three-dimensional Simulations of Magnetorotational Instability in Radiation-dominated Accretion Disks

Neal J. Turner; James M. Stone; Julian H. Krolik; Takayoshi Sano

We examine the small-scale dynamics of black hole accretion disks in which radiation pressure exceeds gas pressure. Local patches of disk are modeled by numerically integrating the equations of radiation MHD in the flux-limited diffusion approximation. The shearing-box approximation is used, and the vertical component of gravity is neglected. Magnetorotational instability (MRI) leads to turbulence in which accretion stresses are due primarily to magnetic torques. When radiation is locked to gas over the length and timescales of fluctuations in the turbulence, the accretion stress, density contrast, and dissipation differ little from those in the corresponding calculations, with radiation replaced by extra gas pressure. However, when radiation diffuses each orbit a distance that is comparable to the rms vertical wavelength of the MRI, radiation pressure is less effective in resisting squeezing. Large density fluctuations occur, and radiation damping of compressive motions converts P dV work into photon energy. The accretion stress in calculations having a net vertical magnetic field is found to be independent of opacity over the range explored and approximately proportional to the square of the net field. In calculations with zero net magnetic flux, the accretion stress depends on the portion of the total pressure that is effective in resisting compression. The stress is lower when radiation diffuses rapidly with respect to the gas. We show that radiation-supported Shakura-Sunyaev disks accreting via internal magnetic stresses are likely to have radiation marginally coupled to turbulent gas motions in their interiors.

Collaboration


Dive into the Neal J. Turner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Sturmann

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

L. Sturmann

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

C. Farrington

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

H. McAlister

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Mourard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Karen Willacy

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. T. Ridgway

Kitt Peak National Observatory

View shared research outputs
Top Co-Authors

Avatar

K. Perraut

Joseph Fourier University

View shared research outputs
Researchain Logo
Decentralizing Knowledge