Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neel Haldolaarachchige is active.

Publication


Featured researches published by Neel Haldolaarachchige.


Nature | 2014

Large, non-saturating magnetoresistance in WTe2

Mazhar N. Ali; Jun Xiong; Steven Flynn; Jing Tao; Quinn Gibson; Leslie M. Schoop; Tian Liang; Neel Haldolaarachchige; Max Hirschberger; N. P. Ong; R. J. Cava

Magnetoresistance is the change in a material’s electrical resistance in response to an applied magnetic field. Materials with large magnetoresistance have found use as magnetic sensors, in magnetic memory, and in hard drives at room temperature, and their rarity has motivated many fundamental studies in materials physics at low temperatures. Here we report the observation of an extremely large positive magnetoresistance at low temperatures in the non-magnetic layered transition-metal dichalcogenide WTe2: 452,700 per cent at 4.5 kelvins in a magnetic field of 14.7 teslas, and 13 million per cent at 0.53 kelvins in a magnetic field of 60 teslas. In contrast with other materials, there is no saturation of the magnetoresistance value even at very high applied fields. Determination of the origin and consequences of this effect, and the fabrication of thin films, nanostructures and devices based on the extremely large positive magnetoresistance of WTe2, will represent a significant new direction in the study of magnetoresistivity.Magnetoresistance is the change of a material’s electrical resistance in response to an applied magnetic field. In addition to its intrinsic scientific interest, it is a technologically important property, placing it in “Pasteur’s quadrant” of res earch value: materials with large magnetorsistance have found use as magnetic sensors 1, in magnetic memory2, hard drives3, transistors4, and are the subject of frequent study in the field of spintronics5, 6. Here we report the observation of an extremely large one-dimensional posi tive magnetoresistance (XMR) in the layered transition metal dichalcogenide (TMD) WTe2; 452,700% at 4.5 Kelvin in a magnetic field of 14.7 Tesla, and 2.5 million% at 0.4 Kelvin in 45 Tesla, with no saturation. The XMR is highly anisotropic, maximized in the crystallographic direction where small pockets of holes and electrons are found in the electronic structure . The determination of the origin of this effect and the fabrication of nanostructures and devices based on the XMR of WTe2 will represent a significant new direction in the study and uses of magnetoresistivity.


Environmental Science & Technology | 2012

One-Pot Synthesis of Magnetic Graphene Nanocomposites Decorated with Core@Double-shell Nanoparticles for Fast Chromium Removal

Jiahua Zhu; Suying Wei; Hongbo Gu; Sowjanya B. Rapole; Qiang Wang; Zhiping Luo; Neel Haldolaarachchige; David P. Young; Zhanhu Guo

A facile thermodecomposition process to synthesize magnetic graphene nanocomposites (MGNCs) is reported. High-resolution transmission electron microscopy and energy filtered elemental mapping revealed a core@double-shell structure of the nanoparticles with crystalline iron as the core, iron oxide as the inner shell and amorphous Si-S-O compound as the outer shell. The MGNCs demonstrate an extremely fast Cr(VI) removal from the wastewater with a high removal efficiency and with an almost complete removal of Cr(VI) within 5 min. The adsorption kinetics follows the pseudo-second-order model and the novel MGNC adsorbent exhibits better Cr(VI) removal efficiency in solutions with low pH. The large saturation magnetization (96.3 emu/g) of the synthesized nanoparticles allows fast separation of the MGNCs from liquid suspension. By using a permanent magnet, the recycling process of both the MGNC adsorbents and the adsorbed Cr(VI) is more energetically and economically sustainable. The significantly reduced treatment time required to remove the Cr(VI) and the applicability in treating the solutions with low pH make MGNCs promising for the efficient removal of heavy metals from the wastewater.


RSC Advances | 2012

Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal

Hongbo Gu; Sowjanya B. Rapole; Jaishri Sharma; Yudong Huang; Dongmei Cao; Henry A. Colorado; Zhiping Luo; Neel Haldolaarachchige; David P. Young; Bryan Walters; Suying Wei; Zhanhu Guo

The removal of toxic hexavalent chromium (Cr(VI)) from polluted water by magnetic polyaniline (PANI) polymer nanocomposites (PNCs) was investigated. The PNCs were synthesized using a facile surface initiated polymerization (SIP) method and demonstrated unique capability to remove Cr(VI) from polluted solutions with a wide pH range. Complete Cr(VI) removal from a 20.0 mL neutral solution with an initial Cr(VI) concentration of 1.0–3.0 mg L−1 was observed after a 5 min treatment period with a PNC load of 10 mg. The PNC dose of 0.6 g L−1 was found to be sufficient for complete Cr(VI) removal from 20.0 mL of 9.0 mg L−1 Cr(VI) solution. The saturation magnetization was observed to have no obvious decrease after treatment with Cr(VI) solution, and these PNCs could be easily recovered using a permanent magnet and recycled. The Cr(VI) removal kinetics were determined to follow pseudo-first-order behavior with calculated room temperature pseudo-first-order rate constants of 0.185, 0.095 and 0.156 min−1 for the solutions with pH values of 1.0, 7.0 and 11.0, respectively. The Cr(VI) removal mechanism was investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and energy-filter transmission electron microscopy (EFTEM). The results showed that PANI was partially oxidized after treatment with Cr(VI) solution, with Cr(VI) being reduced to Cr(III). The EFTEM observation indicated that the adsorbed Cr(III) had penetrated into the interior of the PNCs instead of simply adsorbing on the PNC surface. This synthesized material was found to be easily regenerated by 1.0 mol L−1p-toluene sulfonic acid (PTSA) or 1.0 mol L−1 hydrochloric acid (HCl) and efficiently reused for further Cr(VI) removal.


ACS Applied Materials & Interfaces | 2012

Polyaniline Stabilized Magnetite Nanoparticle Reinforced Epoxy Nanocomposites

Hongbo Gu; Sruthi Tadakamalla; Yudong Huang; Henry A. Colorado; Zhiping Luo; Neel Haldolaarachchige; David P. Young; Suying Wei; Zhanhu Guo

Magnetic epoxy polymer nanocomposites (PNCs) reinforced with magnetite (Fe(3)O(4)) nanoparticles (NPs) have been prepared at different particle loading levels. The particle surface functionality tuned by conductive polyaniline (PANI) is achieved via a surface initiated polymerization (SIP) approach. The effects of nanoparticle loading, surface functionality, and temperature on both the viscosity and storage/loss modulus of liquid epoxy resin suspensions and the physicochemical properties of the cured solid PNCs are systematically investigated. The glass transition temperature (T(g)) of the cured epoxy filled with the functionalized NPs has shifted to the higher temperature in the dynamic mechanical analysis (DMA) compared with that of the cured pure epoxy. Enhanced mechanical properties of the cured epoxy PNCs filled with the functionalized NPs are observed in the tensile test compared with that of the cured pure epoxy and cured epoxy PNCs filled with as-received NPs. The uniform NP distribution in the cured epoxy PNCs filled with functionalized NPs is observed by scanning electron microscope (SEM). These magnetic epoxy PNCs show the good magnetic properties and can be attached by a permanent magnet. Enhanced interfacial interaction between NPs and epoxy is revealed in the fracture surface analysis. The PNCs formation mechanism is also interpreted from the comprehensive analysis based on the TGA, DSC, and FTIR in this work.


Journal of Materials Chemistry | 2011

Electrical and dielectric properties of polyaniline–Al2O3 nanocomposites derived from various Al2O3 nanostructures

Jiahua Zhu; Suying Wei; Lei Zhang; Yuanbing Mao; Jongeun Ryu; Neel Haldolaarachchige; David P. Young; Zhanhu Guo

Four Al2O3 nanostructures (i.e. nanofiber, nanoplatelet, nanorod and nanoflake) have been successfully synthesized via hydrothermal procedures followed by a dehydration process. Subsequently, polyaniline (PANI) nanocomposites incorporating these four Al2O3 nanostructures have been fabricated using a surface initialized polymerization (SIP) method. Both TEM and SEM are used to characterize the morphologies of the Al2O3 nanostructures and PANI/Al2O3 nanocomposites. X-Ray diffraction results reveal that the morphology of the nanofiller has a significant effect on the crystallization behavior of the PANI during polymerization. The electrical conductivity and dielectric permittivity of these nanocomposites are strongly related to both the morphology of the filler and the dispersion quality. Temperature-dependent-conductivity measurements from 50–290 K show that the electron transportation of the nanocomposites follows a quasi 3-d variable range hopping (VRH) conduction mechanism. The extent of charge carrier delocalization calculated from VRH is well correlated to the dielectric response of these nanocomposites. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) results reveal an enhanced thermal stability of the PANI/Al2O3 nanocomposites as compared to that of pure PANI due to the strong interaction between the nanofillers and polymer matrix. The mechanism of the SIP method is also elaborated in this work.


Journal of Materials Chemistry | 2014

Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal

Jiahua Zhu; Hongbo Gu; Jiang Guo; Minjiao Chen; Huige Wei; Zhiping Luo; Henry A. Colorado; Narendranath Yerra; Daowei Ding; Thomas C. Ho; Neel Haldolaarachchige; J.R. Hopper; David P. Young; Zhanhu Guo; Suying Wei

We have demonstrated that magnetic carbon nanocomposite fabrics prepared by microwave assisted heating are advanced adsorbents in the removal of Cr(VI) with a much higher removal capacity of 3.74 mg g−1 compared to 0.32 mg g−1 for cotton fabrics and 0.46 mg g−1 for carbon fabrics. The enhanced Cr(VI) removal is attributed to the highly porous structure of the nanocomposites. The adsorption kinetics follow the pseudo-second-order model, which reveals a very large adsorption capacity and high adsorption rate. The removal process takes only 10 min, which is much faster than conventional adsorbents such as activated carbon and biomass that often requires hours of operation. The significantly reduced treatment time and the large adsorption capacity make these nanocomposite fabrics promising for the highly efficient removal of heavy metals from polluted water.


Journal of Materials Chemistry | 2012

Polypyrrole metacomposites with different carbon nanostructures

Jiahua Zhu; Xi Zhang; Neel Haldolaarachchige; Qiang Wang; Zhiping Luo; Jongeun Ryu; David P. Young; Suying Wei; Zhanhu Guo

Polypyrrole (PPy) nanocomposites incorporating different carbon nanostructures (CNS), including graphenes of different sizes, carbon nanofibers (CNFs) and carbon nanotubes (CNTs), have been successfully synthesized using a surface initiated polymerization (SIP) method. The effects of graphene size, loading level and surface functionality on the electrical conductivity and dielectric permittivity of their corresponding nanocomposites have been systematically studied. The electron transportation mechanism has been investigated, which follows a quasi 3-d variable range hopping (VRH) behavior in the nanocomposites. Meanwhile, CNFs and CNTs with the same loading as graphene are also comparatively studied. Scanning electron microscopy and transmission electron microscopy results indicate that the PPy coating on one-dimensional carbon nanostructures, such as CNFs and CNTs, is more smooth and uniform than that on the two-dimensional graphenes. PPy/CNTs nanocomposites exhibit the lowest resistivity, followed by the composites incorporating the smaller sized graphene without surfactant. More interestingly, a negative permittivity is found in each composite system, which can be easily controlled by adjusting the nanofiller loading, morphology and surface functionality. TGA results indicate that the thermal stability of the polymer nanocomposites (PNCs) is affected by the graphene loading rather than the different nanostructures.


Journal of Materials Chemistry | 2012

Magnetic graphene nanocomposites: electron conduction, giant magnetoresistance and tunable negative permittivity

Jiahua Zhu; Zhiping Luo; Shijie Wu; Neel Haldolaarachchige; David P. Young; Suying Wei; Zhanhu Guo

Magnetic graphene nanocomposites (MGNCs) with surface-adhered magnetic nanoparticles (NPs) are synthesized by a facile thermal-decomposition method. Two different sized graphenes (Gra-10 and Gra-40) are used. The stacking of a few layers of NPs is revealed by the AFM observation in the nanocomposites, especially with a higher particle loading. The TEM observations show that the average particle size increases from 12.1 to 17.4 nm with increasing particle loading from 2 to 10% on Gra-10 substrate. The NPs exhibit a core@shell structure with an iron core and iron oxide shell, confirmed by high resolution TEM, selected area electron diffraction and X-ray diffraction analysis. The graphene size and particle loading dependent behavior such as dielectric permittivity, electrical conductivity, magnetization and giant magnetoresistance (GMR) are observed. The electrical conductivity has been significantly changed in the different sized graphenes after coating with NPs (conductivity: Gra-10 > NPs/Gra-10; Gra-40 < NPs/Gra-40). The MR is observed to vary from 38 to 64% at 130 K, and even higher MR of about 46–72% is observed at 290 K. More interestingly, the dielectric permittivity can be tuned from negative to positive at high frequency with increasing particle loading. All the results indicate that graphene with smaller size obtains superior properties than the one with larger size.


Angewandte Chemie | 2012

Morphology- and phase-controlled iron oxide nanoparticles stabilized with maleic anhydride grafted polypropylene.

Qingliang He; Tingting Yuan; Suying Wei; Neel Haldolaarachchige; Zhiping Luo; David P. Young; Airat Khasanov; Zhanhu Guo

in the fabrication of polymer nano-composites. The advantages of PP-g-MA are that its PPbackbone structure is miscible with polyolefins and its MAfunctional groups are capable of bonding with many organicand inorganic compounds. However, PP-g-MA has rarelybeen reported in the synthesis of magnetic NPs.Herein we report on the synthesis of highly stabilizedFe


RSC Advances | 2012

Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites

Jiahua Zhu; Suying Wei; Ian Y. Lee; Sung Park; John Willis; Neel Haldolaarachchige; David P. Young; Zhiping Luo; Zhanhu Guo

A sol–gel method is used to introduce fluorescent silica shells with tunable thickness on the spherical carbonyl iron particles (CIP) by a combined hydrolysis and condensation of tetraethyl orthosilicate (TEOS). Both gelatin B and 3-aminopropyltriethoxysilane (APTES) are used as primers to render the metal particle surface compatible with TEOS. The silica shell is formed through the hydrolysis and condensation of TEOS on the primer-treated CIP and the shell thickness can be controlled by varying the ratio of chemicals, such as TEOS and ammonia. The silica shell on the particle surface is confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and transmission electron microscopy (TEM). The magnetic and anti-corrosive properties of the CIP and CIP-silica particles have been evaluated. A conformal coating shell is confirmed surrounding the CIP against their etching/dissolution by protons. Polyurethane composites filled with CIP and CIP-silica particles are fabricated with a surface initiated polymerization (SIP) method. A salt fog industrial-level test indicates an improved anti-corrosive behavior of the CIP-silica/PU composites than that of the CIP/PU composites. Both CIP-silica particles and CIP-silica/PU composites exhibit better thermal stability and antioxidation capability than their CIP and CIP/PU counterparts, respectively due to the stronger barrier effect of the noble silica shell. The insulating silica shell decreases the efficiency of the electron transportation among the particles and thus leads to a higher resistivity in the composites.

Collaboration


Dive into the Neel Haldolaarachchige's collaboration.

Top Co-Authors

Avatar

David P. Young

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhanhu Guo

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiping Luo

Fayetteville State University

View shared research outputs
Top Co-Authors

Avatar

Julia Y. Chan

University of Texas at Dallas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiang Guo

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Rongying Jin

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Shane Stadler

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge