Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neel Joshi is active.

Publication


Featured researches published by Neel Joshi.


international conference on computer graphics and interactive techniques | 2005

High performance imaging using large camera arrays

Bennett Wilburn; Neel Joshi; Vaibhav Vaish; Eino-Ville Talvala; Emilio R. Antúnez; Adam Barth; Andrew Adams; Mark Horowitz; Marc Levoy

The advent of inexpensive digital image sensors and the ability to create photographs that combine information from a number of sensed images are changing the way we think about photography. In this paper, we describe a unique array of 100 custom video cameras that we have built, and we summarize our experiences using this array in a range of imaging applications. Our goal was to explore the capabilities of a system that would be inexpensive to produce in the future. With this in mind, we used simple cameras, lenses, and mountings, and we assumed that processing large numbers of images would eventually be easy and cheap. The applications we have explored include approximating a conventional single center of projection video camera with high performance along one or more axes, such as resolution, dynamic range, frame rate, and/or large aperture, and using multiple cameras to approximate a video camera with a large synthetic aperture. This permits us to capture a video light field, to which we can apply spatiotemporal view interpolation algorithms in order to digitally simulate time dilation and camera motion. It also permits us to create video sequences using custom non-uniform synthetic apertures.


computer vision and pattern recognition | 2008

PSF estimation using sharp edge prediction

Neel Joshi; Richard Szeliski; David J. Kriegman

Image blur is caused by a number of factors such as motion, defocus, capturing light over the non-zero area of the aperture and pixel, the presence of anti-aliasing filters on a camera sensor, and limited sensor resolution. We present an algorithm that estimates non-parametric, spatially-varying blur functions (i.e., point-spread functions or PSFs) at subpixel resolution from a single image. Our method handles blur due to defocus, slight camera motion, and inherent aspects of the imaging system. Our algorithm can be used to measure blur due to limited sensor resolution by estimating a sub-pixel, super-resolved PSF even for in-focus images. It operates by predicting a ldquosharprdquo version of a blurry input image and uses the two images to solve for a PSF. We handle the cases where the scene content is unknown and also where a known printed calibration target is placed in the scene. Our method is completely automatic, fast, and produces accurate results.


computer vision and pattern recognition | 2004

Using plane + parallax for calibrating dense camera arrays

Vaibhav Vaish; Bennett Wilburn; Neel Joshi; Marc Levoy

A light field consists of images of a scene taken from different viewpoints. Light fields are used in computer graphics for image-based rendering and synthetic aperture photography, and in vision for recovering shape. In this paper, we describe a simple procedure to calibrate camera arrays used to capture light fields using a plane + parallax framework. Specifically, for the case when the cameras lie on a plane, we show (i) how to estimate camera positions up to an affine ambiguity, and (ii) how to reproject light field images onto a family of planes using only knowledge of planar parallax for one point in the scene. While planar parallax does not completely describe the geometry of the light field, it is adequate for the first two applications which, it turns out, do not depend on having a metric calibration of the light field. Experiments on acquired light fields indicate that our method yields better results than full metric calibration.


european conference on computer vision | 2010

Single image deblurring using motion density functions

Ankit Gupta; Neel Joshi; C. Lawrence Zitnick; Michael F. Cohen; Brian Curless

We present a novel single image deblurring method to estimate spatially non-uniform blur that results from camera shake. We use existing spatially invariant deconvolution methods in a local and robust way to compute initial estimates of the latent image. The camera motion is represented as a Motion Density Function (MDF) which records the fraction of time spent in each discretized portion of the space of all possible camera poses. Spatially varying blur kernels are derived directly from the MDF. We show that 6D camera motion is well approximated by 3 degrees of motion (in-plane translation and rotation) and analyze the scope of this approximation. We present results on both synthetic and captured data. Our system out-performs current approaches which make the assumption of spatially invariant blur.


computer vision and pattern recognition | 2011

Learning a blind measure of perceptual image quality

Huixuan Tang; Neel Joshi; Ashish Kapoor

It is often desirable to evaluate an image based on its quality. For many computer vision applications, a perceptually meaningful measure is the most relevant for evaluation; however, most commonly used measure do not map well to human judgements of image quality. A further complication of many existing image measure is that they require a reference image, which is often not available in practice. In this paper, we present a “blind” image quality measure, where potentially neither the groundtruth image nor the degradation process are known. Our method uses a set of novel low-level image features in a machine learning framework to learn a mapping from these features to subjective image quality scores. The image quality features stem from natural image measure and texture statistics. Experiments on a standard image quality benchmark dataset shows that our method outperforms the current state of art.


computer vision and pattern recognition | 2009

Image deblurring and denoising using color priors

Neel Joshi; C. Lawrence Zitnick; Richard Szeliski; David J. Kriegman

Image blur and noise are difficult to avoid in many situations and can often ruin a photograph. We present a novel image deconvolution algorithm that deblurs and denoises an image given a known shift-invariant blur kernel. Our algorithm uses local color statistics derived from the image as a constraint in a unified framework that can be used for deblurring, denoising, and upsampling. A pixels color is required to be a linear combination of the two most prevalent colors within a neighborhood of the pixel. This two-color prior has two major benefits: it is tuned to the content of the particular image and it serves to decouple edge sharpness from edge strength. Our unified algorithm for deblurring and denoising out-performs previous methods that are specialized for these individual applications. We demonstrate this with both qualitative results and extensive quantitative comparisons that show that we can out-perform previous methods by approximately 1 to 3 DB.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

Image Restoration by Matching Gradient Distributions

Taeg Sang Cho; Charles Lawrence Zitnick; Neel Joshi; Sing Bing Kang; Richard Szeliski; William T. Freeman

The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth images and typically removes textures that are important for visual realism. We present an alternative deconvolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a reconstructed image should have a gradient distribution similar to a reference distribution. In natural images, a reference distribution not only varies from one image to another, but also within an image depending on texture. We estimate a reference distribution directly from an input image for each texture segment. Our algorithm is able to restore rich mid-frequency textures. A large-scale user study supports the conclusion that our algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.


international conference on computer graphics and interactive techniques | 2006

Natural video matting using camera arrays

Neel Joshi; Wojciech Matusik; Shai Avidan

We present an algorithm and a system for high-quality natural video matting using a camera array. The system uses high frequencies present in natural scenes to compute mattes by creating a synthetic aperture image that is focused on the foreground object, which reduces the variance of pixels reprojected from the foreground while increasing the variance of pixels reprojected from the background. We modify the standard matting equation to work directly with variance measurements and show how these statistics can be used to construct a trimap that is later upgraded to an alpha matte. The entire process is completely automatic, including an automatic method for focusing the synthetic aperture image on the foreground object and an automatic method to compute the trimap and the alpha matte. The proposed algorithm is very efficient and has a per-pixel running time that is linear in the number of cameras. Our current system runs at several frames per second, and we believe that it is the first system capable of computing high-quality alpha mattes at near real-time rates without the use of active illumination or special backgrounds.


ACM Transactions on Graphics | 2010

Personal photo enhancement using example images

Neel Joshi; Wojciech Matusik; Edward H. Adelson; David J. Kriegman

We describe a framework for improving the quality of personal photos by using a persons favorite photographs as examples. We observe that the majority of a persons photographs include the faces of a photographers family and friends and often the errors in these photographs are the most disconcerting. We focus on correcting these types of images and use common faces across images to automatically perform both global and face-specific corrections. Our system achieves this by using face detection to align faces between “good” and “bad” photos such that properties of the good examples can be used to correct a bad photo. These “personal” photos provide strong guidance for a number of operations and, as a result, enable a number of high-quality image processing operations. We illustrate the power and generality of our approach by presenting a novel deblurring algorithm, and we show corrections that perform sharpening, superresolution, in-painting of over- and underexposured regions, and white-balancing.


international conference on computational photography | 2010

Seeing Mt. Rainier: Lucky imaging for multi-image denoising, sharpening, and haze removal

Neel Joshi; Michael F. Cohen

Photographing distant objects is challenging for a number of reasons. Even on a clear day, atmospheric haze often represents the majority of light received by a camera. Unfortunately, dehazing alone cannot create a clean image. The combination of shot noise and quantization noise is exacerbated when the contrast is expanded after haze removal. Dust on the sensor that may be unnoticeable in the original images creates serious artifacts. Multiple images can be averaged to overcome the noise, but the combination of long lenses and small camera motion as well as time varying atmospheric refraction results in large global and local shifts of the images on the sensor. An iconic example of a distant object is Mount Rainier, when viewed from Seattle, which is 90 kilometers away. This paper demonstrates a methodology to pull out a clean image of Mount Rainier from a series of images. Rigid and non-rigid alignment steps brings individual pixels into alignment. A novel local weighted averaging method based on ideas from “lucky imaging” minimizes blur, resampling and alignment errors, as well as effects of sensor dust, to maintain the sharpness of the original pixel grid. Finally, dehazing and contrast expansion results in a sharp clean image.

Collaboration


Dive into the Neel Joshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge