Neelakshi Gohain
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Neelakshi Gohain.
Journal of Virology | 2014
Priyamvada Acharya; William D. Tolbert; Neelakshi Gohain; Xueji Wu; Lei Yu; Tongyun Liu; Wensheng Huang; Chih-chin Huang; Young Do Kwon; Robert K. Louder; Timothy S. Luongo; Jason S. McLellan; Marie Pancera; Yongping Yang; Baoshan Zhang; Robin Flinko; James S. Foulke; Mohammad M. Sajadi; Roberta Kamin-Lewis; James E. Robinson; Loïc Martin; Peter D. Kwong; Yongjun Guan; Anthony L. DeVico; George K. Lewis; Marzena Pazgier
ABSTRACT The RV144 vaccine trial implicated epitopes in the C1 region of gp120 (A32-like epitopes) as targets of potentially protective antibody-dependent cellular cytotoxicity (ADCC) responses. A32-like epitopes are highly immunogenic, as infected or vaccinated individuals frequently produce antibodies specific for these determinants. Antibody titers, as measured by enzyme-linked immunosorbent assay (ELISA) against these epitopes, however, do not consistently correlate with protection. Here, we report crystal structures of CD4-stabilized gp120 cores complexed with the Fab fragments of two nonneutralizing, A32-like monoclonal antibodies (MAbs), N5-i5 and 2.2c, that compete for antigen binding and have similar antigen-binding affinities yet exhibit a 75-fold difference in ADCC potency. We find that these MAbs recognize overlapping epitopes formed by mobile layers 1 and 2 of the gp120 inner domain, including the C1 and C2 regions, but bind gp120 at different angles via juxtaposed VH and VL contact surfaces. A comparison of structural and immunological data further showed that antibody orientation on bound antigen and the capacity to form multivalent antigen-antibody complexes on target cells were key determinants of ADCC potency, with the latter process having the greater impact. These studies provide atomic-level definition of A32-like epitopes implicated as targets of protective antibodies in RV144. Moreover, these studies establish that epitope structure and mode of antibody binding can dramatically affect the potency of Fc-mediated effector function against HIV-1. These results provide key insights for understanding, refining, and improving the outcome of HIV vaccine trials, in which relevant immune responses are facilitated by A32-like elicited responses. IMPORTANCE HIV-1 Env is a primary target for antibodies elicited during infection. Although a small number of infected individuals elicit broadly neutralizing antibodies, the bulk of the humoral response consists of antibodies that do not neutralize or do so with limited breadth but may effect protection through Fc receptor-dependent processes, such as antibody-dependent cellular cytotoxicity (ADCC). Understanding these nonneutralizing responses is an important aspect of elucidating the complete spectrum of immune response against HIV-1 infection. With this report, we provide the first atomic-level definition of nonneutralizing CD4-induced epitopes in the N-terminal region of the HIV-1 gp120 (A32-like epitopes). Further, our studies point to the dominant role of precise epitope targeting and mode of antibody attachment in ADCC responses even when largely overlapping epitopes are involved. Such information provides key insights into the mechanisms of Fc-mediated function of antibodies to HIV-1 and will help us understand the outcome of vaccine trials based on humoral immunity.
EBioMedicine | 2016
Jonathan Richard; Beatriz Pacheco; Neelakshi Gohain; Maxime Veillette; Shilei Ding; Nirmin Alsahafi; William D. Tolbert; Jérémie Prévost; Jean-Philippe Chapleau; Mathieu Coutu; Manxue Jia; Nathalie Brassard; Jongwoo Park; Joel R. Courter; Bruno Melillo; Loïc Martin; Cécile Tremblay; Beatrice H. Hahn; Daniel E. Kaufmann; Xueling Wu; Amos B. Smith; Joseph Sodroski; Marzena Pazgier; Andrés Finzi
Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc) able to “push” Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV + sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV + sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS). Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1.
Journal of Virology | 2015
Neelakshi Gohain; William D. Tolbert; Priyamvada Acharya; Lei Yu; Tongyun Liu; Pingsen Zhao; Chiara Orlandi; Maria L. Visciano; Roberta Kamin-Lewis; Mohammad M. Sajadi; Loïc Martin; James E. Robinson; Peter D. Kwong; Anthony L. DeVico; Krishanu Ray; George K. Lewis; Marzena Pazgier
ABSTRACT Accumulating evidence indicates a role for Fc receptor (FcR)-mediated effector functions of antibodies, including antibody-dependent cell-mediated cytotoxicity (ADCC), in prevention of human immunodeficiency virus type 1 (HIV-1) acquisition and in postinfection control of viremia. Consequently, an understanding of the molecular basis for Env epitopes that constitute effective ADCC targets is of fundamental interest for humoral anti-HIV-1 immunity and for HIV-1 vaccine design. A substantial portion of FcR effector function of potentially protective anti-HIV-1 antibodies is directed toward nonneutralizing, transitional, CD4-inducible (CD4i) epitopes associated with the gp41-reactive region of gp120 (cluster A epitopes). Our previous studies defined the A32-like epitope within the cluster A region and mapped it to the highly conserved and mobile layers 1 and 2 of the gp120 inner domain within the C1-C2 regions of gp120. Here, we elucidate additional cluster A epitope structures, including an A32-like epitope, recognized by human monoclonal antibody (MAb) N60-i3, and a hybrid A32-C11-like epitope, recognized by rhesus macaque MAb JR4. These studies define for the first time a hybrid A32-C11-like epitope and map it to elements of both the A32-like subregion and the seven-layered β-sheet of the gp41-interactive region of gp120. These studies provide additional evidence that effective antibody-dependent effector function in the cluster A region depends on precise epitope targeting—a combination of epitope footprint and mode of antibody attachment. All together these findings help further an understanding of how cluster A epitopes are targeted by humoral responses. IMPORTANCE HIV/AIDS has claimed the lives of over 30 million people. Although antiretroviral drugs can control viral replication, no vaccine has yet been developed to prevent the spread of the disease. Studies of natural HIV-1 infection, simian immunodeficiency virus (SIV)- or simian-human immunodeficiency virus (SHIV)-infected nonhuman primates (NHPs), and HIV-1-infected humanized mouse models, passive transfer studies in infants born to HIV-infected mothers, and the RV144 clinical trial have linked FcR-mediated effector functions of anti-HIV-1 antibodies with postinfection control of viremia and/or blocking viral acquisition. With this report we provide additional definition of the molecular determinants for Env antigen engagement which lead to effective antibody-dependent effector function directed to the nonneutralizing CD4-dependent epitopes in the gp41-reactive region of gp120. These findings have important implications for the development of an effective HIV-1 vaccine.
Structure | 2016
William D. Tolbert; Neelakshi Gohain; Maxime Veillette; Jean-Philippe Chapleau; Chiara Orlandi; Maria L. Visciano; Maryam Ebadi; Anthony L. DeVico; Timothy Fouts; Andrés Finzi; George K. Lewis; Marzena Pazgier
Summary Evidence supports a role of antibody-dependent cellular cytotoxicity (ADCC) toward transitional epitopes in the first and second constant (C1-C2) regions of gp120 (A32-like epitopes) in preventing HIV-1 infection and in vaccine-induced protection. Here, we describe the first successful attempt at isolating the inner domain (ID) of gp120 as an independent molecule that encapsulates the A32-like region within a minimal structural unit of the HIV-1 Env. Through structure-based design, we developed ID2, which consists of the ID expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. ID2 expresses C1-C2 epitopes in the context of CD4-triggered full-length gp120 but without any known neutralizing epitope present. Thus, ID2 represents a novel probe for the analysis and/or selective induction of antibody responses to the A32 epitope region. We also present the crystal structure of ID2 complexed with mAb A32, which defines its epitope.
Journal of Medicinal Chemistry | 2015
Cheng Wang; Mingqiang Shen; Neelakshi Gohain; William D. Tolbert; Fang Chen; Naixin Zhang; Ke Yang; Aiping Wang; Yongping Su; Tianmin Cheng; Jinghong Zhao; Marzena Pazgier; Junping Wang
Human defensin 5 (HD5) is a broad-spectrum antibacterial peptide with a C-terminal active region. To promote the development of this peptide into an antibiotic, we initially substituted Glu21 with Arg because it is an electronegative residue located around the active region. Although detrimental to dimer formation, the E21R substitution markedly enhanced the antibacterial activity of HD5 and increased its ability to penetrate cell membranes, demonstrating that increasing the electropositive charge compensated for the effect of dimer disruption. Subsequently, a partial Arg scanning mutagenesis was performed, and Thr7 was selected for replacement with Arg to further strengthen the antibacterial activity. The newly designed peptide, T7E21R-HD5, exhibited potent antibacterial activity, even in saline and serum solutions. In contrast to monomeric E21R-HD5, T7E21R-HD5 assembled into an atypical dimer with parallel β strands, thus expanding the role of increasing electropositive charge in bactericidal activity and providing a useful guide for further defensin-derived antibiotic design.
Scientific Reports | 2016
Neelakshi Gohain; William D. Tolbert; Chiara Orlandi; Jonathan Richard; Shilei Ding; Xishan Chen; Daniel A. Bonsor; Eric J. Sundberg; Wuyuan Lu; Krishanu Ray; Andrés Finzi; George K. Lewis; Marzena Pazgier
Antibody-dependent cell-mediated cytotoxicity (ADCC) by non-neutralizing antibodies (nnAbs) specific to the HIV envelope (Env) glycoproteins present at the surface of virus sensitized or infected cells plays a role in the effective adaptive immune response to HIV. Here, we explore the molecular basis for the epitope at the disulfide loop region (DLR) of the principal immunodominant domain of gp41, recognized by the well-known nnAb F240. Our structural studies reveal details of the F240-gp41 interface and describe a structure of DLR that is distinct from known conformations of this region studied in the context of either CD4-unliganded Env trimer or the gp41 peptide in the unbound state. These data coupled with binding and functional analyses indicate that F240 recognizes non-trimeric Env forms which are significantly overexpressed on intact virions but poorly represented at surfaces of cells infected with infectious molecular clones and endogenously-infected CD4 T cells from HIV-1-infected individuals. Furthermore, although we detect ADCC activities of F240 against cells spinoculated with intact virions, our data suggest that these activities result from F240 recognition of gp41 stumps or misfolded Env variants present on virions rather than its ability to recognize functional gp41 transition structures emerging on trimeric Env post CD4 receptor engagement.
AIDS Research and Human Retroviruses | 2016
Olga Latinovic; Sandra Medina-Moreno; Kate Schneider; Neelakshi Gohain; Juan Carlos Zapata; Marzena Pazgier; Marvin S. Reitz; Joseph Bryant; Robert R. Redfield
Abstract We have previously shown that FLSC, a chimeric protein containing HIV-1BAL gp120 and the D1 and D2 domains of human CD4, blocks the binding and entry of HIV-1 into target cells by occluding CCR5, the major HIV-1 coreceptor. In an effort to improve the antiviral potential of FLSC, we fused it with the hinge-CH2-CH3 region of human IgG1. The IgG moiety should increase both the affinity and stability in vivo of FLSC, due to the resultant bivalency and an extended serum half-life, thereby increasing its antiviral potency. We previously showed that (FLSC) IgG1 indeed had greater antiviral activity against T cell infections. Here we extend these results to macrophages, for which (FLSC) IgG1 has a more potent antiviral activity than FLSC alone, due in part to its higher binding affinity for CCR5. We also test both compounds in a relevant humanized mouse model and show that, as anticipated, the IgG1 moiety confers a greatly extended half-life. These data, taken together with previous results, suggest pot...We have previously shown that FLSC, a chimeric protein containing HIV-1BAL gp120 and the D1 and D2 domains of human CD4, blocks the binding and entry of HIV-1 into target cells by occluding CCR5, the major HIV-1 coreceptor. In an effort to improve the antiviral potential of FLSC, we fused it with the hinge-CH2-CH3 region of human IgG1. The IgG moiety should increase both the affinity and stability in vivo of FLSC, due to the resultant bivalency and an extended serum half-life, thereby increasing its antiviral potency. We previously showed that (FLSC) IgG1 indeed had greater antiviral activity against T cell infections. Here we extend these results to macrophages, for which (FLSC) IgG1 has a more potent antiviral activity than FLSC alone, due in part to its higher binding affinity for CCR5. We also test both compounds in a relevant humanized mouse model and show that, as anticipated, the IgG1 moiety confers a greatly extended half-life. These data, taken together with previous results, suggest potential clinical utility for (FLSC) IgG1 and support further developmental work toward eventual clinical trials.
Acta Crystallographica Section A | 2017
Marzena Pazgier; William D. Tolbert; Neelakshi Gohain; Maxime Veillette; Jean-Philippe Chapleau; Chiara Orlandi; Andrés Finzi; George K. Lewis
Recent nonhuman primate studies and clinical trials suggest that antibody-mediated protection against HIV-1 will require anti-envelope (Env) humoral immunity beyond direct neutralization, to include Fc-receptor effector functions such as antibody-dependent cellular cytotoxicity (ADCC). In parallel, strong evidence points toward the transitional and non-neutralizing A32-like epitopes (Cluster A) of HIV-1 Env as major targets for potent ADCC responses. We were first to define these epitope targets at atomic level by describing structures of several A32-like antibodies in complexes with CD4-triggered gp120. Our studies mapped the A32-epitope into mobile layers 1 and 2 of the inner domain (ID) of CD4-triggered gp120. Here, we describe a stable molecule expressing the C1-C2 region epitopes within a minimal structural unit of HIV-1 Env. Through two phases of structure-based design we developed a construct, referred to as ID2, which consists of the inner domain of gp120 expressed independently of the outer domain and stabilized in the CD4-bound conformation by an inter-layer disulfide bond. Each phase of the design process was visualized and validated at the molecular level by structural analysis of ID variants complexed with anti-Cluster A antibodies as well as by functional testing. Our data indicate that ID2 expresses the C1-C2 epitopes involved in potent ADCC within the context of a CD4triggered full-length gp120, but without the complication of other epitope regions. Thus, ID2 represents a novel candidate probe for the analysis and/or selective induction of antibody responses to the A32 epitope sub-region. We also present the crystal structure of ID2 complexed with mAb A32, the canonical antibody of the Cluster A region. This represents the first structural analysis of mAb A32 bound by its Env antigen defining its epitope.
Cell | 2018
Mohammad M. Sajadi; Amir Dashti; Zahra Rikhtegaran Tehrani; William D. Tolbert; Michael S. Seaman; Xin Ouyang; Neelakshi Gohain; Marzena Pazgier; Dongkyoon Kim; Guy Cavet; Jean Yared; Robert R. Redfield; George K. Lewis; Anthony L. DeVico
Structure | 2017
William D. Tolbert; Neelakshi Gohain; Nirmin Alsahafi; Verna Van; Chiara Orlandi; Shilei Ding; Loïc Martin; Andrés Finzi; George K. Lewis; Krishanu Ray; Marzena Pazgier