Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neelam Panwar is active.

Publication


Featured researches published by Neelam Panwar.


Monthly Notices of the Royal Astronomical Society | 2013

The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT

C. M. Raiteri; M. Villata; F. D'Ammando; V. M. Larionov; M. A. Gurwell; D. O. Mirzaqulov; Paul S. Smith; J. A. Acosta-Pulido; I. Agudo; M. J. Arévalo; E. Benítez; A. Berdyugin; D. A. Blinov; G. A. Borman; M. Böttcher; V. Bozhilov; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; V. T. Doroshenko; Yu. S. Efimov; N. V. Efimova; Sh. A. Ehgamberdiev; J. L. Gómez; P. A. González-Morales; D. Hiriart; S. Ibryamov; Y. Jadhav; S. G. Jorstad

Since the launch of the Fermi satellite, BL Lacertae has been moderately active at ?-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST–AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily ?-ray observations by Fermi. Discrete correlation analysis between the optical and ?-ray emission reveals correlation with a time lag of 0 ± 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding ?-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and ?-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15°, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011–2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.


Astronomy and Astrophysics | 2012

Variability of the blazar 4C 38.41 (B3 1633+382) from GHz frequencies to GeV energies

C. M. Raiteri; M. Villata; Paul S. Smith; V. M. Larionov; J. A. Acosta-Pulido; Margo F. Aller; F. D'Ammando; Gurwell; S. G. Jorstad; M. Joshi; O. M. Kurtanidze; A. Lähteenmäki; D. O. Mirzaqulov; I. Agudo; Hugh D. Aller; M. J. Arévalo; A. A. Arkharov; U. Bach; E. Benítez; A. Berdyugin; D. A. Blinov; K. Blumenthal; C. S. Buemi; A. Bueno; T.M. Carleton; M. I. Carnerero; D. Carosati; C. Casadio; W. P. Chen; A. Di Paola

Context. After years of modest optical activity, the quasar-type blazar 4C 38.41 (B3 1633+382) experienced a large outburst in 2011, which was detected throughout the entire electromagnetic spectrum, renewing interest in this source. Aims. We present the results of low-energy multifrequency monitoring by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) consortium and collaborators, as well as those of spectropolarimetric/spectrophotometric monitoring at the Steward Observatory. We also analyse high-energy observations of the Swift and Fermi satellites. This combined study aims to provide insights into the source broad-band emission and variability properties. Methods. We assemble optical, near-infrared, millimetre, and radio light curves and investigate their features and correlations. In the optical, we also analyse the spectroscopic and polarimetric properties of the source. We then compare the low-energy emission behaviour with that at high energies. Results. In the optical-UV band, several results indicate that there is a contribution from a quasi-stellar-object (QSO) like emission component, in addition to both variable and polarised jet emission. In the optical, the source is redder-when-brighter, at least for R ≳ 16. The optical spectra display broad emission lines, whose flux is constant in time. The observed degree of polarisation increases with flux and is higher in the red than the blue. The spectral energy distribution reveals a bump peaking around the U band. The unpolarised emission component is likely thermal radiation from the accretion disc that dilutes the jet polarisation. We estimate its brightness to be R QSO ∼ 17.85-18 and derive the intrinsic jet polarisation degree. We find no clear correlation between the optical and radio light curves, while the correlation between the optical and γ-ray flux apparently fades in time, likely because of an increasing optical to γ-ray flux ratio. Conclusions. As suggested for other blazars, the long-term variability of 4C 38.41 can be interpreted in terms of an inhomogeneous bent jet, where different emitting regions can change their alignment with respect to the line of sight, leading to variations in the Doppler factor δ. Under the hypothesis that in the period 2008-2011 all the γ-ray and optical variability on a one-week timescale were due to changes in δ, this would range between ∼7 and ∼21. If the variability were caused by changes in the viewing angle θ only, then θ would go from ∼2.6° to ∼5°. Variations in the viewing angle would also account for the dependence of the polarisation degree on the source brightness in the framework of a shock-in-jet model.


Monthly Notices of the Royal Astronomical Society | 2014

Young stellar population of bright-rimmed clouds BRC 5, BRC 7 and BRC 39

Neelam Panwar; W. P. Chen; A. K. Pandey; M. R. Samal; K. Ogura; D. K. Ojha; Jessy Jose; B. C. Bhatt

Bright-rimmed clouds (BRCs), illuminated and shaped by nearby OB stars, are potential sites of recent/ongoing star formation. Here we present an optical and infrared photometric study of three BRCs: BRC 5, BRC 7 and BRC 39 to obtain a census of the young stellar population, thereby inferring the star formation scenario, in these regions. In each BRC, the Class I sources are found to be located mostly near the bright rim or inside the cloud, whereas the Class II sources are preferentially outside, with younger sources closer to the rim. This provides strong support to sequential star formation triggered by radiation-driven implosion due to the ultraviolet radiation. Moreover, each BRC contains a small group of young stars being revealed at its head, as the next-generation stars. In particular, the young stars at the heads of BRC 5 and BRC 7 are found to be intermediate-/high-mass stars, which, under proper conditions, may themselves trigger further star birth, thereby propagating star formation out to long distances.


The Astronomical Journal | 2013

TIME VARIABILITY OF EMISSION LINES FOR FOUR ACTIVE T TAURI STARS. I. OCTOBER–DECEMBER IN 2010*

Mei-Yin Chou; Michihiro Takami; Nadine Manset; Tracy L. Beck; Tae-Soo Pyo; W. P. Chen; Neelam Panwar; Jennifer L. Karr; Hsien Shang; Hauyu Baobab Liu

We present optical spectrophotometric monitoring of four active T Tauri stars (DG Tau, RY Tau, XZ Tau, RW?Aur?A) at high spectral resolution (R 1 ? 104), to investigate the correlation between time variable mass ejection seen in the jet/wind structure of the driving source and time variable mass accretion probed by optical emission lines. This may allow us to constrain the understanding of the jet/wind launching mechanism, the location of the launching region, and the physical link with magnetospheric mass accretion. In 2010, observations were made at six different epochs to investigate how daily and monthly variability might affect such a study. We perform comparisons between the line profiles we observed and those in the literature over a period of decades and confirm the presence of time variability separate from the daily and monthly variability during our observations. This is so far consistent with the idea that these line profiles have a long-term variability (3-20?yr) related to episodic mass ejection suggested by the structures in the extended flow components. We also investigate the correlations between equivalent widths and between luminosities for different lines. We find that these correlations are consistent with the present paradigm of steady magnetospheric mass accretion and emission line regions that are close to the star.


The Astrophysical Journal | 2014

Characterization of the Praesepe Star Cluster by Photometry and Proper Motions with 2MASS, PPMXL, and Pan-STARRS

Ping Wang; Wei Chen; C. C. Lin; A. K. Pandey; C. K. Huang; Neelam Panwar; Chien-Hsiu Lee; Mengchun Tsai; C.-H. Tang; W. S. Burgett; K. C. Chambers; P. W. Draper; H. Flewelling; T. Grav; J. N. Heasley; K. W. Hodapp; M. Huber; Robert Jedicke; Nick Kaiser; R. P. Kudritzki; G. A. Luppino; Robert H. Lupton; E. A. Magnier; N. Metcalfe; David G. Monet; Jeffrey S. Morgan; Peter M. Onaka; Paul A. Price; Christopher W. Stubbs; W. E. Sweeney

Membership identification is the first step in determining the properties of a star cluster. Low-mass members in particular could be used to trace the dynamical history, such as mass segregation, stellar evaporation, or tidal stripping, of a star cluster in its Galactic environment. We identified member candidates of the intermediate-age Praesepe cluster (M44) with stellar masses ~0.11-2.4 M ☉, using Panoramic Survey Telescope And Rapid Response System and Two Micron All Sky Survey photometry, and PPMXL proper motions. Within a sky area of 3° radius, 1040 candidates are identified, of which 96 are new inclusions. Using the same set of selection criteria on field stars, an estimated false positive rate of 16% was determined, suggesting that 872 of the candidates are true members. This most complete and reliable membership list allows us to favor the BT-Settl model over other stellar models. The cluster shows a distinct binary track above the main sequence, with a binary frequency of 20%-40%, and a high occurrence rate of similar mass pairs. The mass function is consistent with that of the disk population but shows a deficit of members below 0.3 solar masses. A clear mass segregation is evidenced, with the lowest-mass members in our sample being evaporated from this disintegrating cluster.


Monthly Notices of the Royal Astronomical Society | 2015

Multiwavelength behaviour of the blazar OJ 248 from radio to γ-rays

M. I. Carnerero; C. M. Raiteri; M. Villata; J. A. Acosta-Pulido; F. D'Ammando; Paul S. Smith; V. M. Larionov; I. Agudo; M. J. Arévalo; A. A. Arkharov; U. Bach; E. Benítez; D. A. Blinov; V. Bozhilov; C. S. Buemi; A. Bueno Bueno; D. Carosati; C. Casadio; W. P. Chen; G. Damljanovic; A. Di Paola; N. V. Efimova; Sh. A. Ehgamberdiev; M. Giroletti; J. L. Gómez; P. A. González-Morales; A. B. Grinon-Marin; T. S. Grishina; M. A. Gurwell; D. Hiriart

We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006-2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), as well as data from the Swift (optical-UV and X-rays) and Fermi (gamma-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman Alpha intervening system at z = 0.525. Two major outbursts were observed in 2006-2007 and in 2012-2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio-optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the gamma-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches about 19 per cent during the early stage of the 2012-2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarisation angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour or structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg II broad emission line with an essentially stable flux of 6.2 e-15 erg cm-2 s-1 and a full width at half-maximum of 2053 km s-1.


The Astrophysical Journal | 2017

The low-mass population in the young cluster Stock 8: Stellar properties and Initial Mass Function

Jessy Jose; Gregory J. Herczeg; M. R. Samal; Qiliang Fang; Neelam Panwar

The evolution of HII regions/supershells can trigger a new generation of stars/clusters at their peripheries, with environmental conditions that may affect the initial mass function, disk evolution and star formation efficiency. In this paper we study the stellar content and star formation processes in the young cluster Stock 8, which itself is thought to be formed during the expansion of a supershell. We present deep optical photometry along with JHK and 3.6, 4.5 {\mu}m photometry from UKIDSS and Spitzer-IRAC. We use multi-color criteria to identify the candidate young stellar objects in the region. Using evolutionary models, we obtain a median log(age) of ~6.5 (~3.0 Myr) with an observed age spread of ~0.25 dex for the cluster. Monte Carlo simulations of the population of Stock 8, based on estimates for the photometric uncertainty, differential reddening, binarity, and variability, indicate that these uncertainties introduce an age spread of ~0.15 dex. The intrinsic age spread in the cluster is ~0.2 dex. The fraction of young stellar objects surrounded by disk is ~35%. The K-band luminosity function of Stock 8 is similar to that of the Trapezium cluster. The IMF of Stock 8 has a Salpeter- like slope at >0.5 Msun and the IMF flattens and peaks at ~0.4 Msun, below which declines into the substellar regime. Although Stock 8 is surrounded by several massive stars, there seems to be no severe environmental effect in the form of IMF due to the proximity of massive stars around the cluster.


Monthly Notices of the Royal Astronomical Society | 2017

Low-mass young stellar population and star formation history of the cluster IC 1805 in the W4 H ii region

Neelam Panwar; M. R. Samal; A. K. Pandey; Jessy Jose; W. P. Chen; D. K. Ojha; K. Ogura; Harinder P. Singh; R. K. S. Yadav

W4 is a giant H{\sc ii} region ionized by the OB stars of the cluster IC~1805. The H{\sc ii} region/cluster complex has been a subject of numerous investigations as it is an excellent laboratory for studying the feedback effect of massive stars on the surrounding region. However, the low-mass stellar content of the cluster IC~1805 remains poorly studied till now. With the aim to unravel the low-mass stellar population of the cluster, we present the results of a multiwavelength study based on deep optical data obtained with the Canada-France-Hawaii Telescope, infrared data from 2MASS,


Monthly Notices of the Royal Astronomical Society | 2016

Variable stars in young open star cluster NGC 7380

Sneh Lata; A. K. Pandey; Neelam Panwar; W. P. Chen; M. R. Samal; J. C. Pandey

Spitzer


Publications of the Astronomical Society of Japan | 2016

RZ Leonis Minoris bridging between ER Ursae Majoris-type dwarf nova and nova-like system

Taichi Kato; Ryoko Ishioka; Keisuke Isogai; Mariko Kimura; Akira Imada; Ian Miller; Kazunari Masumoto; Hirochika Nishino; Naoto Kojiguchi; Miho Kawabata; Daisuke Sakai; Yuki Sugiura; Hisami Furukawa; Kenta Yamamura; Hiroshi Kobayashi; Katsura Matsumoto; Shiang-Yu Wang; Yi Chou; Chow-Choong Ngeow; W. P. Chen; Neelam Panwar; C. C. Lin; Hsiang-Yao Hsiao; Jhen-Kuei Guo; Chien-Cheng Lin; Chingis Omarov; Anatoly Kusakin; Maxim Krugov; Donn R. Starkey; Elena P. Pavlenko

Space Telescope and X-ray data from

Collaboration


Dive into the Neelam Panwar's collaboration.

Top Co-Authors

Avatar

W. P. Chen

National Central University

View shared research outputs
Top Co-Authors

Avatar

A. K. Pandey

Aryabhatta Research Institute of Observational Sciences

View shared research outputs
Top Co-Authors

Avatar

M. R. Samal

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

C. Casadio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

I. Agudo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge