Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neeru M. Sharma is active.

Publication


Featured researches published by Neeru M. Sharma.


Cardiovascular Research | 2011

Decreased nNOS in the PVN leads to increased sympathoexcitation in chronic heart failure: role for CAPON and Ang II

Neeru M. Sharma; Hong Zheng; Parmender P. Mehta; Yifan Li; Kaushik P. Patel

AIMS Previously, we showed an enhanced excitatory (N-methyl d-aspartate receptor-NR(1)) and decreased inhibitory neuronal nitric oxide (NO) synthase (nNOS) influence within the paraventricular nucleus (PVN) of rats with chronic heart failure (CHF). Although NR(1) and nNOS are normally linked, they can be disconnected by nNOS sequestering with nNOS-associated protein (CAPON). The aim of this study was to elucidate the underlying mechanism for the disconnection between increased expression of NR(1) and decreased nNOS in the PVN of rats with CHF which leads to enhanced sympathoexcitation. METHODS AND RESULTS CAPON expression was augmented while nNOS expression was decreased in the PVN of rats with CHF (6-8 weeks after left coronary artery ligation). Angiotensin II (Ang II) type I receptor (AT(1)) antagonist losartan (Los) treatment in rats with CHF reduced renal sympathetic nerve activity with concomitant normalization of protein expression of CAPON and nNOS in the PVN. Los treatment also reversed the blunting of endogenous NO-mediated sympatho-inhibition in rats with CHF. Moreover, Ang II-induced increase in CAPON expression in NG108 neuronal cells was also ameliorated by Los. CONCLUSION Blocking AT(1) receptors prevents the overexpression of CAPON and concomitant decrease in nNOS in the PVN, resulting in attenuation of sympathoexcitation commonly observed in CHF. Taken together, our data highlight the importance of altered expression and subsequent interaction of nNOS and CAPON within the PVN, leading to increased sympathoexcitation in CHF. Identifying this crucial nNOS/CAPON interaction regulated by AT(1) receptors may provide an important potential therapeutic target in CHF.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Chronic AT1 receptor blockade normalizes NMDA-mediated changes in renal sympathetic nerve activity and NR1 expression within the PVN in rats with heart failure

Allison Kleiber; Hong Zheng; Neeru M. Sharma; Kaushik P. Patel

Exercise training normalizes enhanced glutamatergic mechanisms within the paraventricular nucleus (PVN) concomitant with the normalization of increased plasma ANG II levels in rats with heart failure (HF). We tested whether ANG II type 1 (AT(1)) receptors are involved in the normalization of PVN glutamatergic mechanisms using chronic AT(1) receptor blockade with losartan (Los; 50 mg.kg(-1).day(-1) in drinking water for 3 wk). Left ventricular end-diastolic pressure was increased in both HF + vehicle (Veh) and HF + Los groups compared with sham-operated animals (Sham group), although it was significantly attenuated in the HF + Los group compared with the HF + Veh group. The effect of Los on cardiac function was similar to exercise training. At the highest dose of N-methyl-d-aspartate (NMDA; 200 pmol) injected into the PVN, the increase in renal sympathetic nerve activity was 93 +/- 13% in the HF + Veh group, which was significantly higher (P < 0.05) than the increase in the Sham + Veh (45 +/- 2%) and HF + Los (47 +/- 2%) groups. Relative NMDA receptor subunit NR(1) mRNA expression within the PVN was increased 120% in the HF + Veh group compared with the Sham + Veh group (P < 0.05) but was significantly attenuated in the HF + Los group compared with the HF + Veh group (P < 0.05). NR(1) protein expression increased 87% in the HF + Veh group compared with the Sham + Veh group but was significantly attenuated in the HF + Los group compared with the HF + Veh group (P < 0.05). Furthermore, in in vitro experiments using neuronal NG-108 cells, we found that ANG II treatment stimulated NR(1) protein expression and that Los significantly ameliorated the NR(1) expression induced by ANG II. These data are consistent with our hypothesis that chronic AT(1) receptor blockade normalizes glutamatergic mechanisms within the PVN in rats with HF.


Hypertension | 2011

Gene Transfer of Neuronal Nitric Oxide Synthase to the Paraventricular Nucleus Reduces the Enhanced Glutamatergic Tone in Rats With Chronic Heart Failure

Hong Zheng; Xuefei Liu; Yifan Li; Neeru M. Sharma; Kaushik P. Patel

Our previous studies have shown that the decreased NO and increased glutamatergic mechanisms on sympathetic regulation within the paraventricular nucleus (PVN) may contribute to the elevated sympathoexcitation during chronic heart failure (CHF). In the present study, we investigated the effects of neuronal NO synthase (nNOS) gene transfer on N-methyl-D-aspartic acid receptor subunit NR1 in the rats with a coronary ligation model of CHF. Adenovirus vectors encoding nNOS (AdnNOS) or adenovirus vectors encoding &bgr;-galactosidase were transfected into the PVN in vivo. Five days after application of AdnNOS, the increased expression of nNOS within the PVN was confirmed by NADPH-diaphorase staining, real-time PCR, and Western blot. In anesthetized rats, AdnNOS treatment significantly enhanced the blunted renal sympathetic nerve activity, blood pressure, and heart rate responses to NO synthase inhibitor NG-monomethyl-L-arginine in the rats with CHF compared with CHF-adenovirus vectors encoding &bgr;-galactosidase group. AdnNOS significantly decreased the enhanced renal sympathetic nerve activity, blood pressure, and heart rate responses to N-methyl-D-aspartic acid in the rats with CHF (renal sympathetic nerve activity: 44±2% versus 79±6%; P<0.05) compared with CHF-adenovirus vectors encoding the &bgr;-galactosidase group. AdnNOS transfection significantly reduced the increased NR1 receptor mRNA expression (&Dgr;35±5%) and protein levels (&Dgr;24±4%) within the PVN in CHF rats. Furthermore, in neuronal NG-108 cells, NR1 receptor protein expression decreased in a dose-dependent manner after AdnNOS transfection. According to our results, nNOS downregulation enhances glutamate transmission in the PVN by increasing NR1 subunit expression. This mechanism may enhance renal sympathetic nerve activity in CHF rats.


Journal of Biological Chemistry | 2011

The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis.

Neeru M. Sharma; Olga V. Kochenova; Polina V. Shcherbakova

Rev1 and DNA polymerase ζ (Polζ) are involved in the tolerance of DNA damage by translesion synthesis (TLS). The proliferating cell nuclear antigen (PCNA), the auxiliary factor of nuclear DNA polymerases, plays an important role in regulating the access of TLS polymerases to the primer terminus. Both Rev1 and Polζ lack the conserved hydrophobic motif that is used by many proteins for the interaction with PCNA at its interdomain connector loop. We have previously reported that the interaction of yeast Polζ with PCNA occurs at an unusual site near the monomer-monomer interface of the trimeric PCNA. Using GST pull-down assays, PCNA-coupled affinity beads pull-down and gel filtration chromatography, we show that the same region is required for the physical interaction of PCNA with the polymerase-associated domain (PAD) of Rev1. The interaction is disrupted by the pol30-113 mutation that results in a double amino acid substitution at the monomer-monomer interface of PCNA. Genetic analysis of the epistatic relationship of the pol30-113 mutation with an array of DNA repair and damage tolerance mutations indicated that PCNA-113 is specifically defective in the Rev1/Polζ-dependent TLS pathway. Taken together, the data suggest that Polζ and Rev1 are unique among PCNA-interacting proteins in using the novel binding site near the intermolecular interface of PCNA. The new mode of Rev1-PCNA binding described here suggests a mechanism by which Rev1 adopts a catalytically inactive configuration at the replication fork.


Hypertension | 2016

Astrocytes Contribute to Angiotensin II Stimulation of Hypothalamic Neuronal Activity and Sympathetic Outflow.

Javier E. Stern; Sookjin Son; Vinicia Campana Biancardi; Hong Zheng; Neeru M. Sharma; Kaushik P. Patel

Angiotensin II (AngII) is a key neuropeptide that acting within the brain hypothalamic paraventricular nucleus regulates neurohumoral outflow to the circulation. Moreover, an exacerbated AngII action within the paraventricular nucleus contributes to neurohumoral activation in hypertension. Although AngII effects involve changes in paraventricular nucleus neuronal activity, the precise underlying mechanisms, cellular targets, and distribution of AngII receptors within the paraventricular nucleus remain largely unknown. Thus, whether AngII effects involve direct actions on paraventricular neurons, or whether it acts via intermediary cells, such as astrocytes, is still controversial. To address this important gap in our knowledge, we used a multidisciplinary approach combining patch-clamp electrophysiology in presympathetic paraventricular neurons and astrocytes, along with in vivo sympathetic nerve recordings and astrocyte-targeted gene manipulations. We present evidence for a novel mechanism underlying central AngII actions, which involves astrocytes as major intermediary cellular targets. We found that AngII type 1 receptor mRNA is expressed in paraventricular astrocytes. Moreover, we report that AngII inhibited glutamate transporter function, increasing in turn extracellular glutamate levels. This resulted in the activation of neuronal extrasynaptic NMDA (N-methyl-D-aspartate) receptors, increased presympathetic neuronal activity, enhanced sympathoexcitatory outflow, and increased blood pressure. Together, our studies support astrocytes as critical intermediary cell types mediating brain AngII regulation of the circulation and indicate that AngII-mediated neuronal and sympathoexcitatory effects are dependent on a unique neuroglial signaling modality involving nonsynaptic glutamate transmission.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Angiotensin II-mediated posttranslational modification of nNOS in the PVN of rats with CHF: role for PIN

Neeru M. Sharma; Tamra L. Llewellyn; Hong Zheng; Kaushik P. Patel

An increased sympathetic drive is an adverse characteristic in chronic heart failure (CHF). The protein expression of neuronal nitric oxide synthase (nNOS)- and hence nitric oxide (NO)-mediated sympathoinhibition is reduced in the paraventricular nucleus (PVN) of rats with CHF. However, the molecular mechanism(s) of nNOS downregulation remain(s) unclear. The aim of the study was to reveal the underlying molecular mechanism for the downregulation of nNOS in the PVN of CHF rats. Sprague-Dawley rats with CHF (6-8 wk after coronary artery ligation) demonstrated decreased nNOS dimer/monomer ratio (42%), with a concomitant increase in the expression of PIN (a protein inhibitor of nNOS known to dissociate nNOS dimers into monomers) by 47% in the PVN. Similarly, PIN expression is increased in a neuronal cell line (NG108) treated with angiotensin II (ANG II). Furthermore, there is an increased accumulation of high-molecular-weight nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of CHF rats (29%). ANG II treatment in NG108 cells in the presence of a proteasome inhibitor, lactacystin, also leads to a 69% increase in accumulation of nNOS-Ub conjugates immunoprecipitated by an antiubiquitin antibody. There is an ANG II-driven, PIN-mediated decrease in the dimeric catalytically active nNOS in the PVN, due to ubiquitin-dependent proteolytic degradation in CHF. Our results show a novel intermediary mechanism that leads to decreased levels of active nNOS in the PVN, involved in subsequent reduction in sympathoinhibition during CHF, offering a new target for the treatment of CHF and other cardiovascular diseases.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2012

Exercise training normalizes enhanced sympathetic activation from the paraventricular nucleus in chronic heart failure: role of angiotensin II

Hong Zheng; Neeru M. Sharma; Xuefei Liu; Kaushik P. Patel

Exercise training (ExT) normalizes the increased sympathetic outflow in heart failure (HF), but the underlying mechanisms are not known. We hypothesized ExT would normalize the augmented activation of the paraventricular nucleus (PVN) via an angiotensinergic mechanism during HF. Four groups of rats used were the following: 1) sham-sedentary (Sed); 2) sham-ExT; 3) HF-Sed, and 4) HF-ExT. HF was induced by left coronary artery ligation. Four weeks after surgery, 3 wk of treadmill running was performed in ExT groups. The number of FosB-positive cells in the PVN was significantly increased in HF-Sed group compared with the sham-Sed group. ExT normalized (negated) this increase in the rats with HF. In anesthetized condition, the increases in renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) in response to microinjection of angiotensin (ANG) II (50∼200 pmol) in the PVN of HF-Sed group were significantly greater than of the sham-Sed group. In the HF-ExT group the responses to microinjection of ANG II were not different from sham-Sed or sham-ExT groups. Blockade of ANG II type 1 (AT(1)) receptors with losartan in the PVN produced a significantly greater decrease in RSNA, MAP, and HR in HF-Sed group compared with sham-Sed group. ExT prevented the difference between HF and sham groups. AT(1) receptor protein expression was increased 50% in HF-Sed group compared with sham-Sed group. In the HF-ExT group, AT(1) receptor protein expression was not significantly different from sham-Sed or sham-ExT groups. In conclusion, one mechanism by which ExT alleviates elevated sympathetic outflow in HF may be through normalization of angiotensinergic mechanisms within the PVN.


American Journal of Physiology-cell Physiology | 2012

Nitric oxide inhibits the expression of AT1 receptors in neurons

Neeru M. Sharma; Hong Zheng; Yifan Li; Kaushik P. Patel

We have previously observed an increased of angiotensin II (ANG II) type 1 receptor (AT(1)R) with enhanced AT(1)R-mediated sympathetic outflow and concomitant downregulation of neuronal nitric oxide (NO) synthase (nNOS) with reduced NO-mediated inhibition from the paraventricular nucleus (PVN) in rats with heart failure. To test the hypothesis that NO exerts an inhibitory effect on AT(1)R expression in the PVN, we used primary cultured hypothalamic cells of neonatal rats and neuronal cell line NG108-15 as in vitro models. In hypothalamic primary culture, NO donor sodium nitroprusside (SNP) induced dose-dependent decreases in mRNA and protein of AT(1)R (10(-5) M SNP, AT(1)R protein was 10 ± 2% of control level) while NOS inhibitor N(G)-monomethyl-l-arginine (l-NMMA) induced dose-dependent increases in mRNA and protein levels of AT(1)R (10(-5) M l-NMMA, AT(1)R protein was 148 ± 8% of control level). Similar effects of SNP and l-NMMA on AT(1)R expression were also observed in NG108-15 cell line (10(-6) M SNP, AT(1)R protein was 30 ± 4% of control level while at the dose of 10(-6) M l-NMMA, AT(1)R protein was 171 ± 15% of the control level). Specific inhibition of nNOS, using antisense, caused an increase in AT(1)R expression while overexpression of nNOS, using adenoviral gene transfer (Ad.nNOS), caused an inhibition of AT(1)R expression in NG108 cells. Antisense nNOS transfection augmented the increase while Ad.nNOS infection blunted the increase in intracellular calcium concentration in response to ANG II treatment in NG108 cells. In addition, downregulation of AT(1)R mRNA as well as protein level in neuronal cell line in response to S-nitroso-N-acetyl pencillamine (SNAP) treatment was blocked by protein kinase G (PKG) inhibitor, while the peroxynitrite scavenger deforxamine had no effect. These results suggest that NO acts as an inhibitory regulator of AT(1)R expression and the activation of PKG is the required step in the regulation of AT(1)R gene expression via cGMP-dependent signaling pathway.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Effects of exercise training on SFO-mediated sympathoexcitation during chronic heart failure

Tamra L. Llewellyn; Neeru M. Sharma; Hong Zheng; Kaushik P. Patel

Exercise training (ExT) has been shown to reduce sympathetic drive during heart failure (HF). The subfornical organ (SFO) is involved in the neural control of sympathetic drive. We hypothesized that an activated SFO contributes to enhanced sympathetic activity in HF. We also postulated that ExT would reduce the activation of the SFO and its contribution to the sympathetic drive during HF. Sprague-Dawley rats were subjected to coronary artery ligation to induce HF. Rats were assigned to ExT for 3-4 wk. Rats with HF had a 2.5-fold increase in FosB-positive cells in the SFO compared with sham-operated rats, and this was normalized by ExT. Microinjection of ANG II (100 pmol) into the SFO resulted in a greater increase in renal sympathetic nerve activity (RSNA), blood pressure, and heart rate in the HF group than in the sham-operated group. These responses were normalized after ExT (change in RSNA: 23 ± 3% vs. 8 ± 2%). ExT also abolished the decrease in RSNA in HF rats after the microinjection of losartan (200 pmol) into the SFO (-21 ± 4% vs. -2 ± 3%). Finally, there was elevated mRNA (5-fold) and protein expression (43%) of ANG II type 1 receptors in the SFO of rats with HF, which were reversed after ExT. These data suggest that the enhanced activity of the SFO by elevated tonic ANG II contributes to the enhanced sympathoexcitation exhibited in HF. The decrease in ANG II type 1 receptor expression in the SFO by ExT may be responsible for reversing the neuronal activation in the SFO and SFO-mediated sympathoexcitation in rats with HF.


Diabetes | 2016

Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase

Shyam Sundar Nandi; Hong Zheng; Neeru M. Sharma; Hamid R. Shahshahan; Kaushik P. Patel; Paras K. Mishra

MicroRNAs (miRNAs) have a fundamental role in diabetic heart failure. The cardioprotective miRNA-133a (miR-133a) is downregulated, and contractility is decreased in diabetic hearts. Norepinephrine (NE) is a key catecholamine that stimulates contractility by activating β-adrenergic receptors (β-AR). NE is synthesized from tyrosine by the rate-limiting enzyme, tyrosine hydroxylase (TH), and tyrosine is catabolized by tyrosine aminotransferase (TAT). However, the cross talk/link between TAT and TH in the heart is unclear. To determine whether miR-133a plays a role in the cross talk between TH and TAT and regulates contractility by influencing NE biosynthesis and/or β-AR levels in diabetic hearts, Sprague-Dawley rats and miR-133a transgenic (miR-133aTg) mice were injected with streptozotocin to induce diabetes. The diabetic rats were then treated with miR-133a mimic or scrambled miRNA. Our results revealed that miR-133a mimic treatment improved the contractility of the diabetic rat’s heart concomitant with upregulation of TH, cardiac NE, β-AR, and downregulation of TAT and plasma levels of NE. In miR-133aTg mice, cardiac-specific miR-133a overexpression prevented upregulation of TAT and suppression of TH in the heart after streptozotocin was administered. Moreover, miR-133a overexpression in CATH.a neuronal cells suppressed TAT with concomitant upregulation of TH, whereas knockdown and overexpression of TAT demonstrated that TAT inhibited TH. Luciferase reporter assay confirmed that miR-133a targets TAT. In conclusion, miR-133a controls the contractility of diabetic hearts by targeting TAT, regulating NE biosynthesis, and consequently, β-AR and cardiac function.

Collaboration


Dive into the Neeru M. Sharma's collaboration.

Top Co-Authors

Avatar

Kaushik P. Patel

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hong Zheng

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xuefei Liu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bo Xu

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Paras K. Mishra

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Shyam Sundar Nandi

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yifan Li

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Frédéric Frézard

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Gisele Cristiane Vaz

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Marco Antonio Peliky Fontes

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge