Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nehmé Saksouk is active.

Publication


Featured researches published by Nehmé Saksouk.


Molecular Cell | 2009

HBO1 HAT complexes target chromatin throughout gene coding regions via multiple PHD finger interactions with histone H3 tail.

Nehmé Saksouk; Nikita Avvakumov; Karen S. Champagne; Tiffany Hung; Yannick Doyon; Christelle Cayrou; Eric Paquet; Mukta Ullah; Anne-Julie Landry; Valérie Côté; Xiang-Jiao Yang; Or Gozani; Tatiana G. Kutateladze; Jacques Côté

The HBO1 HAT protein is the major source of histone H4 acetylation in vivo and has been shown to play critical roles in gene regulation and DNA replication. A distinctive characteristic of HBO1 HAT complexes is the presence of three PHD finger domains in two different subunits: tumor suppressor proteins ING4/5 and JADE1/2/3. Biochemical and functional analyses indicate that these domains interact with histone H3 N-terminal tail region, but with a different specificity toward its methylation status. Their combinatorial action is essential in regulating chromatin binding and substrate specificity of HBO1 complexes, as well as cell growth. Importantly, localization analyses on the human genome indicate that HBO1 complexes are enriched throughout the coding regions of genes, supporting a role in transcription elongation. These results underline the importance and versatility of PHD finger domains in regulating chromatin association and histone modification crosstalk within a single protein complex.


Circulation | 2011

Signal Transducers and Activators of Transcription-3/Pim1 Axis Plays a Critical Role in the Pathogenesis of Human Pulmonary Arterial Hypertension

Roxane Paulin; Audrey Courboulin; Jolyane Meloche; Vincent Mainguy; Eric Dumas de la Roque; Nehmé Saksouk; Jacques Côté; Steeve Provencher; Mark A. Sussman; Sébastien Bonnet

Background— Pulmonary artery hypertension (PAH) is a proliferative disorder associated with enhanced pulmonary artery smooth muscle cell proliferation and suppressed apoptosis. The sustainability of this phenotype required the activation of a prosurvival transcription factor like signal transducers and activators of transcription-3 (STAT3) and nuclear factor of activated T cell (NFAT). Because these factors are implicated in several physiological processes, their inhibition in PAH patients could be associated with detrimental effects. Therefore, a better understanding of the mechanism accounting for their expression/activation in PAH pulmonary artery smooth muscle cells is of great therapeutic interest. Methods and Results— Using multidisciplinary and translational approaches, we demonstrated that STAT3 activation in both human and experimental models of PAH accounts for the expression of both NFATc2 and the oncoprotein kinase Pim1, which trigger NFATc2 activation. Because Pim1 expression correlates with the severity of PAH in humans and is confined to the PAH pulmonary artery smooth muscle cell, Pim1 was identified as an attractive therapeutic target for PAH. Indeed, specific Pim1 inhibition in vitro decreases pulmonary artery smooth muscle cell proliferation and promotes apoptosis, all of which are sustained by NFATc2 inhibition. In vivo, tissue-specific inhibition of Pim1 by nebulized siRNA reverses monocrotaline-induced PAH in rats, whereas Pim1 knockout mice are resistant to PAH development. Conclusion— We demonstrated for the first time that inhibition of the inappropriate activation of STAT3/Pim1 axis is a novel, specific, and attractive therapeutic strategy to reverse PAH.


Nature Structural & Molecular Biology | 2009

Histone H3 tail clipping regulates gene expression

Helena Santos-Rosa; Antonis Kirmizis; Christopher J. Nelson; Till Bartke; Nehmé Saksouk; Jacques Côté; Tony Kouzarides

Induction of gene expression in yeast and human cells involves changes in the histone modifications associated with promoters. Here we identify a histone H3 endopeptidase activity in Saccharomyces cerevisiae that may regulate these events. The endopeptidase cleaves H3 after Ala21, generating a histone that lacks the first 21 residues and shows a preference for H3 tails carrying repressive modifications. In vivo, the H3 N terminus is clipped, specifically within the promoters of genes following the induction of transcription. H3 clipping precedes the process of histone eviction seen when genes become fully active. A truncated H3 product is not generated in yeast carrying a mutation of the endopeptidase recognition site (H3 Q19A L20A) and gene induction is defective in these cells. These findings identify clipping of H3 tails as a previously uncharacterized modification of promoter-bound nucleosomes, which may result in the localized clearing of repressive signals during the induction of gene expression.


Genes & Development | 2013

Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity

Marie-Eve Lalonde; Nikita Avvakumov; Karen C. Glass; France-Hélène Joncas; Nehmé Saksouk; Michael J. Holliday; Eric Paquet; Kezhi Yan; Qiong Tong; Brianna J. Klein; Song Tan; Xiang-Jiao Yang; Tatiana G. Kutateladze; Jacques Côté

Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.


Proteins | 2008

The crystal structure of the ING5 PHD finger in complex with an H3K4me3 histone peptide

Karen S. Champagne; Nehmé Saksouk; Pedro V. Peña; Kyle L. Johnson; Mukta Ullah; Xiang-Jiao Yang; Jacques Côté; Tatiana G. Kutateladze

Chromatin dynamics regulates diverse nuclear processes and influences cellular viability and tumorigenesis. The discrete chromatin states are linked to covalent histone modifications that control the extent of DNA accessibility to transacting factors. One of the most common epigenetic modifications is methylation of histone H3 at lysine 4 (H3K4). Lys4 can be mono-, di-, or tri-methylated, and the tri-methylated mark (H3K4me3) is normally associated with euchromatin and active gene transcription.1,2 The inhibitor of growth (ING) family of tumor suppressors contain a C-terminal plant homeodomain (PHD) finger. This conserved zinc-binding module is found in many nuclear proteins including transcription factors, histone modifying enzymes, and ATP dependent chromatin remodeling complexes.3-5 A subset of PHD fingers has recently been shown to bind methylated and unmodified histone tails,5-9 with the H3K4me3 mark being specifically recognized by ING proteins. Unlike ING1 and ING2, which have been identified as components of histone deacetylase (HDAC) complexes, ING5 associates with histone acetyltransferase (HAT) complexes containing MOZ (monocytic leukemia zinc finger protein)/MORF (MOZ-related factor) and HBO1.10 To establish the structural basis of chromatin targeting by the HAT associated ING proteins, we determined the crystal structure of the ING5 PHD finger in complex with its histone target (H3K4me3). We also measured binding affinities for unmodified, mono-, di-, and tri-methylated histone peptides, and showed that both full-length ING5 and methylated H3K4 are essential for the acetyltransferase activity of the MOZ/MORF and HBO1 complexes. This functional data are the first direct evidence supporting the critical role of ING5 in directing the MOZ/MORF and HBO1 complexes to chromatin, which consequently increases the local HAT activity and stimulates chromatin remodeling.


Molecular and Cellular Biology | 2012

Conserved Molecular Interactions within the HBO1 Acetyltransferase Complexes Regulate Cell Proliferation

Nikita Avvakumov; Marie-Eve Lalonde; Nehmé Saksouk; Eric Paquet; Karen C. Glass; Anne-Julie Landry; Yannick Doyon; Christelle Cayrou; Geneviève A. Robitaille; Darren E. Richard; Xiang-Jiao Yang; Tatiana G. Kutateladze; Jacques Côté

ABSTRACT Acetyltransferase complexes of the MYST family with distinct substrate specificities and functions maintain a conserved association with different ING tumor suppressor proteins. ING complexes containing the HBO1 acetylase are a major source of histone H3 and H4 acetylation in vivo and play critical roles in gene regulation and DNA replication. Here, our molecular dissection of HBO1/ING complexes unravels the protein domains required for their assembly and function. Multiple PHD finger domains present in different subunits bind the histone H3 N-terminal tail with a distinct specificity toward lysine 4 methylation status. We show that natively regulated association of the ING4/5 PHD domain with HBO1-JADE determines the growth inhibitory function of the complex, linked to its tumor suppressor activity. Functional genomic analyses indicate that the p53 pathway is a main target of the complex, at least in part through direct transcription regulation at the initiation site of p21/CDKN1A. These results demonstrate the importance of ING association with MYST acetyltransferases in controlling cell proliferation, a regulated link that accounts for the reported tumor suppressor activities of these complexes.


Journal of Biological Chemistry | 2008

Role of Jade-1 in the Histone Acetyltransferase (HAT) HBO1 Complex

Rebecca L. Foy; Ihn Young Song; Vipul Chitalia; Herbert T. Cohen; Nehmé Saksouk; Christelle Cayrou; Cyrus Vaziri; Jacques Côté; Maria V. Panchenko

Regulation of global chromatin acetylation is important for chromatin remodeling. A small family of Jade proteins includes Jade-1L, Jade-2, and Jade-3, each bearing two mid-molecule tandem plant homology domain (PHD) zinc fingers. We previously demonstrated that the short isoform of Jade-1L protein, Jade-1, is associated with endogenous histone acetyltransferase (HAT) activity. It has been found that Jade-1L/2/3 proteins co-purify with a novel HAT complex, consisting of HBO1, ING4/5, and Eaf6. We investigated a role for Jade-1/1L in the HBO1 complex. When overexpressed individually, neither Jade-1/1L nor HBO1 affected histone acetylation. However, co-expression of Jade-1/1L and HBO1 increased acetylation of the bulk of endogenous histone H4 in epithelial cells in a synergistic manner, suggesting that Jade1/1L positively regulates HBO1 HAT activity. Conversely, small interfering RNA-mediated depletion of endogenous Jade resulted in reduced levels of H4 acetylation. Moreover, HBO1-mediated H4 acetylation activity was enhanced severalfold by the presence of Jade-1/1L in vitro. The removal of PHD fingers affected neither binding nor mutual Jade-1-HBO1 stabilization but completely abrogated the synergistic Jade-1/1L- and HBO1-mediated histone H4 acetylation in live cells and in vitro with reconstituted oligonucleosome substrates. Therefore, PHDs are necessary for Jade-1/1L-induced acetylation of nucleosomal histones by HBO1. In contrast to Jade-1/1L, the PHD zinc finger protein ING4/5 failed to synergize with HBO1 to promote histone acetylation. The physical interaction of ING4/5 with HBO1 occurred in the presence of Jade-1L or Jade-3 but not with the Jade-1 short isoform. In summary, this study demonstrates that Jade-1/1L are crucial co-factors for HBO1-mediated histone H4 acetylation.


Mutation Research | 2007

Histone modifications in response to DNA damage

Mohammed Altaf; Nehmé Saksouk; Jacques Côté


Cellular and Molecular Life Sciences | 2008

de)MYSTification and INGenuity of tumor suppressors

Nehmé Saksouk; Nikita Avvakumov; Jacques Côté


Journal of Cell Biology | 2011

Role for miR-204 in human pulmonary arterial hypertension

Audrey Courboulin; Roxane Paulin; Nellie J. Giguère; Nehmé Saksouk; Tanya Perreault; Jolyane Meloche; Eric Paquet; Sabrina Biardel; Steeve Provencher; Jacques Côté; Martin Simard; Sébastien Bonnet

Collaboration


Dive into the Nehmé Saksouk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen S. Champagne

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge