Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sébastien Bonnet is active.

Publication


Featured researches published by Sébastien Bonnet.


Circulation | 2006

An Abnormal Mitochondrial–Hypoxia Inducible Factor-1α–Kv Channel Pathway Disrupts Oxygen Sensing and Triggers Pulmonary Arterial Hypertension in Fawn Hooded Rats Similarities to Human Pulmonary Arterial Hypertension

Sébastien Bonnet; Evangelos D. Michelakis; Christopher J. Porter; Miguel A. Andrade-Navarro; Bernard Thébaud; Sandra Bonnet; Alois Haromy; Gwyneth Harry; Rohit Moudgil; M. Sean McMurtry; E. Kenneth Weir; Stephen L. Archer

Background— The cause of pulmonary arterial hypertension (PAH) was investigated in humans and fawn hooded rats (FHR), a spontaneously pulmonary hypertensive strain. Methods and Results— Serial Doppler echocardiograms and cardiac catheterizations were performed in FHR and FHR/BN1, a consomic control that is genetically identical except for introgression of chromosome 1. PAH began after 20 weeks of age, causing death by ≈60 weeks. FHR/BN1 did not develop PAH. FHR pulmonary arterial smooth muscle cells (PASMCs) had a rarified reticulum of hyperpolarized mitochondria with reduced expression of electron transport chain components and superoxide dismutase-2. These mitochondrial abnormalities preceded PAH and persisted in culture. Depressed mitochondrial reactive oxygen species (ROS) production caused normoxic activation of hypoxia inducible factor (HIF-1&agr;), which then inhibited expression of oxygen-sensitive, voltage-gated K+ channels (eg, Kv1.5). Disruption of this mitochondrial-HIF-Kv pathway impaired oxygen sensing (reducing hypoxic pulmonary vasoconstriction, causing polycythemia), analogous to the pathophysiology of chronically hypoxic Sprague-Dawley rats. Restoring ROS (exogenous H2O2) or blocking HIF-1&agr; activation (dominant-negative HIF-1&agr;) restored Kv1.5 expression/function. Dichloroacetate, a mitochondrial pyruvate dehydrogenase kinase inhibitor, corrected the mitochondrial-HIF-Kv pathway in FHR-PAH and human PAH PASMCs. Oral dichloroacetate regressed FHR-PAH and polycythemia, increasing survival. Chromosome 1 genes that were dysregulated in FHRs and relevant to the mitochondria-HIF-Kv pathway included HIF-3&agr; (an HIF-1&agr; repressor), mitochondrial cytochrome c oxidase, and superoxide dismutase-2. Like FHRs, human PAH-PASMCs had dysmorphic, hyperpolarized mitochondria; normoxic HIF-1&agr; activation; and reduced expression/activity of HIF-3&agr;, cytochrome c oxidase, and superoxide dismutase-2. Conclusions— FHRs have a chromosome 1 abnormality that disrupts a mitochondria-ROS-HIF-Kv pathway, leading to PAH. Similar abnormalities occur in idiopathic human PAH. This study reveals an intersection between oxygen-sensing mechanisms and PAH. The mitochondria-ROS-HIF-Kv pathway offers new targets for PAH therapy.


Circulation Research | 2004

Dichloroacetate Prevents and Reverses Pulmonary Hypertension by Inducing Pulmonary Artery Smooth Muscle Cell Apoptosis

M. Sean McMurtry; Sébastien Bonnet; Xichen Wu; Jason R. B. Dyck; Alois Haromy; Kyoko Hashimoto; Evangelos D. Michelakis

The pulmonary arteries (PA) in pulmonary arterial hypertension (PAH) are constricted and remodeled;. They have suppressed apoptosis, partly attributable to suppression of the bone morphogenetic protein axis and selective downregulation of PA smooth muscle cell (PASMC) voltage-gated K+ channels, including Kv1.5. The Kv downregulation-induced increase in [K+]i, tonically inhibits caspases, further suppressing apoptosis. Mitochondria control apoptosis and produce activated oxygen species like H2O2, which regulate vascular tone by activating K+ channels, but their role in PAH is unknown. We show that dichloroacetate (DCA), a metabolic modulator that increases mitochondrial oxidative phosphorylation, prevents and reverses established monocrotaline-induced PAH (MCT-PAH), significantly improving mortality. Compared with MCT-PAH, DCA-treated rats (80 mg/kg per day in drinking water on day 14 after MCT, studied on day 21) have decreased pulmonary, but not systemic, vascular resistance (63% decrease, P<0.002), PA medial thickness (28% decrease, P<0.0001), and right ventricular hypertrophy (34% decrease, P<0.001). DCA is similarly effective when given at day 1 or day 21 after MCT (studied day 28) but has no effect on normal rats. DCA depolarizes MCT-PAH PASMC mitochondria and causes release of H2O2 and cytochrome c, inducing a 10-fold increase in apoptosis within the PA media (TUNEL and caspase 3 activity) and decreasing proliferation (proliferating-cell nuclear antigen and BrdU assays). Immunoblots, immunohistochemistry, laser-captured microdissection-quantitative reverse-transcription polymerase chain reaction and patch-clamping show that DCA reverses the Kv1.5 downregulation in resistance PAs. In summary, DCA reverses PA remodeling by increasing the mitochondria-dependent apoptosis/proliferation ratio and upregulating Kv1.5 in the media. We identify mitochondria-dependent apoptosis as a potential target for therapy and DCA as an effective and selective treatment for PAH.


Circulation Research | 2004

Preferential Expression and Function of Voltage-Gated, O2-Sensitive K+ Channels in Resistance Pulmonary Arteries Explains Regional Heterogeneity in Hypoxic Pulmonary Vasoconstriction: Ionic Diversity in Smooth Muscle Cells

Stephen L. Archer; Xichen Wu; Bernard Thébaud; Ali Nsair; Sébastien Bonnet; Ben Tyrrell; M. Sean McMurtry; Kyoko Hashimoto; Gwyneth Harry; Evangelos D. Michelakis

Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (EM), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (IK) and a more hyperpolarized EM and were uniquely O2− and correolide-sensitive. The O2-sensitive current (active at −65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited IK 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide’s effects. The hypoxia-sensitive, correolide-insensitive IK (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2− and correolide-sensitive IK like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.


Circulation | 2009

Dehydroepiandrosterone Reverses Systemic Vascular Remodeling Through the Inhibition of the Akt/GSK3-β/NFAT Axis

Sébastien Bonnet; Roxane Paulin; Gopinath Sutendra; Peter Dromparis; Mélanie Roy; Kristalee Watson; Alois Haromy; Jason R. B. Dyck; Evangelos D. Michelakis

Background— The remodeled vessel wall in many vascular diseases such as restenosis after injury is characterized by proliferative and apoptosis-resistant vascular smooth muscle cells. There is evidence that proproliferative and antiapoptotic states are characterized by a metabolic (glycolytic phenotype and hyperpolarized mitochondria) and electric (downregulation and inhibition of plasmalemmal K+ channels) remodeling that involves activation of the Akt pathway. Dehydroepiandrosterone (DHEA) is a naturally occurring and clinically used steroid known to inhibit the Akt axis in cancer. We hypothesized that DHEA will prevent and reverse the remodeling that follows vascular injury. Methods and Results— We used cultured human carotid vascular smooth muscle cell and saphenous vein grafts in tissue culture, stimulated by platelet-derived growth factor to induce proliferation in vitro and the rat carotid injury model in vivo. DHEA decreased proliferation and increased vascular smooth muscle cell apoptosis in vitro and in vivo, reducing vascular remodeling while sparing healthy tissues after oral intake. Using pharmacological (agonists and antagonists of Akt and its downstream target glycogen-synthase-kinase-3β [GSK-3β]) and molecular (forced expression of constitutively active Akt1) approaches, we showed that the effects of DHEA were mediated by inhibition of Akt and subsequent activation of GSK-3β, leading to mitochondrial depolarization, increased reactive oxygen species, activation of redox-sensitive plasmalemmal voltage-gated K+ channels, and decreased [Ca2+]i. These functional changes were accompanied by sustained molecular effects toward the same direction; by decreasing [Ca2+]i and inhibiting GSK-3β, DHEA inhibited the nuclear factor of activated T cells transcription factor, thus increasing expression of Kv channels (Kv1.5) and contributing to sustained mitochondrial depolarization. These results were independent of any steroid-related effects because they were not altered by androgen and estrogen inhibitors but involved a membrane G protein–coupled receptor. Conclusions— We suggest that the orally available DHEA might be an attractive candidate for the treatment of systemic vascular remodeling, including restenosis, and we propose a novel mechanism of action for this important hormone and drug.


Circulation | 2007

CD36 expression contributes to age-induced cardiomyopathy in mice.

Debby P.Y. Koonen; Maria Febbraio; Sébastien Bonnet; Martin E. Young; Evangelos D. Michelakis; Jason R.B. Dyck

Background— Cardiac remodeling and impaired cardiac performance in the elderly significantly increase the risk of developing heart disease. Although vascular abnormalities associated with aging contribute to the age-related decline in cardiac function, myocardium-specific events may also be involved. Methods and Results— We show that intramyocardial lipid accumulation, as well as a reduction in both fatty acid and glucose oxidation and a subsequent deterioration in cardiac ATP supply, also occurs in aged mice. Consistent with an energetically compromised heart, hearts from aged mice display depressed myocardial performance and cardiac hypertrophy. Associated with this is a dramatic increase in the fatty acid transport protein CD36 in aged hearts compared with young hearts, which suggests that CD36 is a mediator of these multiple metabolic, functional, and structural alterations in the aged heart. In accordance with this, hearts from aged CD36-deficient mice have lower levels of intramyocardial lipids, demonstrate improved mitochondria-derived ATP production, have significantly enhanced function compared with aged wild-type mice, and have a blunted hypertrophic response. Conclusions— These findings provide evidence that CD36 mediates an age-induced cardiomyopathy in mice and suggest that inhibition of CD36 may be an approach for the treatment of the detrimental age-related effects on cardiac performance.


Cancer Cell | 2007

A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth

Sébastien Bonnet; Stephen L. Archer; Joan Allalunis-Turner; Alois Haromy; Christian Beaulieu; Richard B. Thompson; Christopher T. Lee; Gary D. Lopaschuk; Lakshmi Puttagunta; Sandra Bonnet; Gwyneth Harry; Kyoko Hashimoto; Christopher J. Porter; Miguel A. Andrade; Bernard Thébaud; Evangelos D. Michelakis


Pharmacology & Therapeutics | 2007

Potassium channel diversity in the pulmonary arteries and pulmonary veins: Implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension

Sébastien Bonnet; Stephen L. Archer


Novartis Foundation symposium | 2006

A central role for oxygen-sensitive K+ channels and mitochondria in the specialized oxygen-sensing system.

Stephen L. Archer; Evangelos D. Michelakis; Bernard Thébaud; Sébastien Bonnet; Rohit Moudgil; Xi Chen Wu; E. Kenneth Weir


Archive | 2015

Remodeling and Pulmonary Hypertension Reticulum Stress on Mitochondria and Triggers Pseudohypoxic Pulmonary Vascular Uncoupling Protein 2 Deficiency Mimics the Effects of Hypoxia and Endoplasmic

Gregory B. Waypa; Paul T. Schumacker; Loren P. Thompson; Yazan Al-Hasan; LaShauna C. Evans; Gerard Pinkas; Erinne R. Dabkowski; Evangelos D. Michelakis; Peter Dromparis; Roxane Paulin; Gopinath Sutendra; Andrew C. Qi; Sébastien Bonnet


Archive | 2011

DHEA and Vascular Health and Functions

Roxane Paulin; Eric Dumas de la Roque; Sébastien Bonnet

Collaboration


Dive into the Sébastien Bonnet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge