Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil Berry is active.

Publication


Featured researches published by Neil Berry.


PLOS Medicine | 2008

Prevention of SIV rectal transmission and priming of T cell responses in macaques after local pre-exposure application of tenofovir gel.

Martin Cranage; Sally Sharpe; Carolina Herrera; Alethea Cope; Mike Dennis; Neil Berry; Claire Ham; Jonathan L. Heeney; Naser L. Rezk; Angela D. M. Kashuba; Peter A. Anton; Ian McGowan; Robin J. Shattock

Background The rectum is particularly vulnerable to HIV transmission having only a single protective layer of columnar epithelium overlying tissue rich in activated lymphoid cells; thus, unprotected anal intercourse in both women and men carries a higher risk of infection than other sexual routes. In the absence of effective prophylactic vaccines, increasing attention is being given to the use of microbicides and preventative antiretroviral (ARV) drugs. To prevent mucosal transmission of HIV, a microbicide/ARV should ideally act locally at and near the virus portal of entry. As part of an integrated rectal microbicide development programme, we have evaluated rectal application of the nucleotide reverse transcriptase (RT) inhibitor tenofovir (PMPA, 9-[(R)-2-(phosphonomethoxy) propyl] adenine monohydrate), a drug licensed for therapeutic use, for protective efficacy against rectal challenge with simian immunodeficiency virus (SIV) in a well-established and standardised macaque model. Methods and Findings A total of 20 purpose-bred Indian rhesus macaques were used to evaluate the protective efficacy of topical tenofovir. Nine animals received 1% tenofovir gel per rectum up to 2 h prior to virus challenge, four macaques received placebo gel, and four macaques remained untreated. In addition, three macaques were given tenofovir gel 2 h after virus challenge. Following intrarectal instillation of 20 median rectal infectious doses (MID50) of a noncloned, virulent stock of SIVmac251/32H, all animals were analysed for virus infection, by virus isolation from peripheral blood mononuclear cells (PBMC), quantitative proviral DNA load in PBMC, plasma viral RNA (vRNA) load by sensitive quantitative competitive (qc) RT-PCR, and presence of SIV-specific serum antibodies by ELISA. We report here a significant protective effect (p = 0.003; Fisher exact probability test) wherein eight of nine macaques given tenofovir per rectum up to 2 h prior to virus challenge were protected from infection (n = 6) or had modified virus outcomes (n = 2), while all untreated macaques and three of four macaques given placebo gel were infected, as were two of three animals receiving tenofovir gel after challenge. Moreover, analysis of lymphoid tissues post mortem failed to reveal sequestration of SIV in the protected animals. We found a strong positive association between the concentration of tenofovir in the plasma 15 min after rectal application of gel and the degree of protection in the six animals challenged with virus at this time point. Moreover, colorectal explants from non-SIV challenged tenofovir-treated macaques were resistant to infection ex vivo, whereas no inhibition was seen in explants from the small intestine. Tissue-specific inhibition of infection was associated with the intracellular detection of tenofovir. Intriguingly, in the absence of seroconversion, Gag-specific gamma interferon (IFN-γ)-secreting T cells were detected in the blood of four of seven protected animals tested, with frequencies ranging from 144 spot forming cells (SFC)/106 PBMC to 261 spot forming cells (SFC)/106 PBMC. Conclusions These results indicate that colorectal pretreatment with ARV drugs, such as tenofovir, has potential as a clinically relevant strategy for the prevention of HIV transmission. We conclude that plasma tenofovir concentration measured 15 min after rectal administration may serve as a surrogate indicator of protective efficacy. This may prove to be useful in the design of clinical studies. Furthermore, in vitro intestinal explants served as a model for drug distribution in vivo and susceptibility to virus infection. The finding of T cell priming following exposure to virus in the absence of overt infection is provocative. Further studies would reveal if a combined modality microbicide and vaccination strategy is feasible by determining the full extent of local immune responses induced and their protective potential.


Immunogenetics | 2009

Mhc haplotype H6 is associated with sustained control of SIVmac251 infection in Mauritian cynomolgus macaques

Edward T. Mee; Neil Berry; Claire Ham; Ulrike Sauermann; Maria Teresa Maggiorella; Frédéric Martinon; Ernst J. Verschoor; Jonathan L. Heeney; Roger Le Grand; Fausto Titti; Neil Almond; Nicola J. Rose

The restricted diversity of the major histocompatibility complex (MHC) of Mauritian cynomolgus macaques provides powerful opportunities for insight into host-viral interactions and cellular immune responses that restrict lentiviral infections. However, little is known about the effects of Mhc haplotypes on control of SIV in this species. Using microsatellite-based genotyping and allele-specific PCR, Mhc haplotypes were deduced for 35 macaques infected with the same stock of SIVmac251. Class I haplotype H6 was associated with a reduction in chronic phase viraemia (p = 0.0145) while a similar association was observed for H6 class II (p = 0.0063). An increase in chronic phase viraemia, albeit an insignificant trend, was observed in haplotype H5-positive animals. These results further emphasise the value of genetically defined populations of non-human primates in AIDS research and provide a foundation for detailed characterisation of MHC restricted cellular immune responses and the effects of host genetics on SIV replication in cynomolgus macaques.


Journal of Virology | 2005

CD8+ Lymphocytes Do Not Mediate Protection against Acute Superinfection 20 Days after Vaccination with a Live Attenuated Simian Immunodeficiency Virus

Richard Stebbings; Neil Berry; Herman Waldmann; Pru Bird; Geoff Hale; Jim Stott; David North; Robin Hull; Joanna Hall; Jenny Lines; Stuart Brown; Nikki D'Arcy; Leanne Davis; William Elsley; Cherry Edwards; Deborah Ferguson; Jane F. Allen; Neil Almond

ABSTRACT In order to test the hypothesis that CD8+ cytotoxic T lymphocytes mediate protection against acute superinfection, we depleted >99% of CD8+ lymphocytes in live attenuated simian immunodeficiency virus macC8 (SIVmacC8) vaccinees from the onset of vaccination, maintained that depletion for 20 days, and then challenged with pathogenic, wild-type SIVmacJ5. Vaccinees received 5 mg per kg of humanized anti-CD8 monoclonal antibody (MAb) 1 h before inoculation, followed by the same dose again on days 3, 7, 10, 13, and 17. On day 13, peripheral CD8+ T lymphocytes were >99% depleted in three out of four anti-CD8 MAb-treated vaccinees. At this time attenuated SIVmacC8 viral RNA loads in anti-CD8 MAb-treated vaccinees were significantly higher than control vaccinees treated contemporaneously with nonspecific human immunoglobulin. Lymphoid tissue CD8+ T lymphocyte depletion was >99% in three out of four anti-CD8 MAb-treated vaccinees on the day of wild-type SIVmacJ5 challenge. All four control vaccinees and three out of four anti-CD8 MAb-treated vaccinees were protected against detectable superinfection with wild-type SIVmacJ5. Although superinfection with wild-type SIVmacJ5 was detected at postmortem in a single anti-CD8 MAb-treated vaccinee, this did not correlate with the degree of preceding CD8+ T lymphocyte depletion. Clearance of attenuated SIVmacC8 viremia coincided with recovery of normal CD8+ T lymphocyte counts between days 48 and 76. These results support the view that cytotoxic T lymphocytes are important for host-mediated control of SIV primary viremia but do not indicate a central role in protection against acute superinfection conferred by inoculation with live attenuated SIV.


Journal of General Virology | 2008

Resistance to superinfection by a vigorously replicating, uncloned stock of simian immunodeficiency virus (SIVmac251) stimulates replication of a live attenuated virus vaccine (SIVmacC8)

Neil Berry; Richard Stebbings; Debbie Ferguson; Claire Ham; Jack Alden; Stuart Brown; Adrian Jenkins; Jenny Lines; Laura Duffy; Leanne Davis; William Elsley; Mark Page; Robin Hull; Jim Stott; Neil Almond

Vaccination with live attenuated simian immunodeficiency virus (SIVmacC8) confers potent, reproducible protection against homologous wild-type virus challenge (SIVmacJ5). The ability of SIVmacC8 to confer resistance to superinfection with an uncloned ex vivo derivative of SIVmac251 (SIVmac32H/L28) was investigated. In naïve, Mauritian-derived cynomolgus macaques (Macaca fascicularis), SIVmac32H/L28 replicated to high peak titres (>10(8) SIV RNA copies ml(-1)), persisted at high levels and induced distinctive pathology in lymphoid tissues. In cynomolgus macaques vaccinated with SIVmacC8, no evidence of detectable superinfection was observed in 3/8 vaccinates following challenge 3 or 20 weeks later with SIVmac32H/L28. Analyses after SIVmac32H/L28 challenge revealed a significant reduction in viral RNA (P<0.001) and DNA levels between 20 week vaccinates and challenge controls. Amongst 3 week vaccinates, less potent protection was observed. However, analysis of env from breakthrough virus indicated >99% sequence similarity with the vaccine virus. Highly sensitive PCR assays that distinguish vaccine and challenge virus stocks demonstrated restimulation of replication of the vaccine virus SIVmacC8 in the face of potent protection against a vigorous, homologous challenge virus. Vaccine-induced antiviral neutralizing antibodies and anti-Nef CD8+ cytotoxic T cell responses did not correlate with the outcome of the challenge. Defining the mechanism of vaccine protection will need to account for the effective control of a genetically closely related challenge virus whilst remaining unable to suppress replication of the pre-existing vaccine virus. The role of innate and intrinsic anti-retroviral immunity in the protection conferred by live attenuated SIV vaccines warrants careful study.


Biologicals | 2012

Investigation of porcine circovirus contamination in human vaccines.

Sarah M. Gilliland; Lindsay Forrest; Heather Carre; Adrian Jenkins; Neil Berry; Javier Martin; Philip D. Minor; Silke Schepelmann

DNA from porcine circovirus type 1 (PCV1) and 2 (PCV2) has recently been detected in two vaccines against rotaviral gastroenteritis from manufacturers A and B. We investigated if PCV1 sequences are present in other viral vaccines. We screened seeds, bulks and final vaccine preparations from ten manufacturers using qRT-PCR. We detected 3.8 × 10³ to 1.9 × 10⁷ PCV1 DNA copies/milliliter in live poliovirus seeds for inactivated polio vaccine (IPV) from manufacturer A, however, following inactivation and purification, the finished IPV was PCV1-negative. PCV1 DNA was not detectable in live polio preparations from other vaccine producers. There was no detectable PCV1 DNA in the measles, mumps, rubella and influenza vaccines analysed including material supplied by manufacturer A. We confirmed that the PCV1 genome in the rotavirus vaccine from manufacturer A is near full-length. It contains two mutations in the PCV cap gene, which may result from viral adaptation to Vero cells. Bulks of this vaccine contained 9.8 × 10¹⁰ to 1.8 × 10¹¹ PCV1 DNA copies/millilitre and between 4.1 × 10⁷ and 5.5 × 10⁸ DNA copies were in the final doses. We found traces of PCV1 and PCV2 DNA in the rotavirus vaccine from manufacturer B. This highlights the issue of vaccine contamination and may impact on vaccine quality control.


PLOS ONE | 2011

Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

Neil Berry; Claire Ham; Edward T. Mee; Nicola J. Rose; Giada Mattiuzzo; Adrian Jenkins; Mark Page; William Elsley; Mark Robinson; Deborah Smith; Deborah Ferguson; Greg J. Towers; Neil Almond; Richard Stebbings

Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system.


Tissue Antigens | 2010

Mhc haplotype M3 is associated with early control of SHIVsbg infection in Mauritian cynomolgus macaques

Edward T. Mee; Neil Berry; Claire Ham; A. Aubertin; Jenny Lines; Joanna Hall; Richard Stebbings; Mark Page; Neil Almond; Nicola J. Rose

The restricted major histocompatibilty complex of Mauritian cynomolgus macaques confers exceptional potential on this species in human immunodeficiency virus (HIV) vaccine development. However, knowledge of the effects of Mhc genetics on commonly used simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) stocks is incomplete. We determined the effect of Mhc haplotypes on SHIVsbg replication kinetics in a cohort of 25 naïve cynomolgus macaques. Haplotype M3 was associated with a 1.58log(10) reduction in viraemia at day 28 post infection (p.i.). Haplotype M6 was associated with elevated SHIVsbg viraemia at days 28 and 56. No significant effect of Mhc class II haplotypes on viral replication was observed. These data emphasise the importance of genetic characterisation of experimental macaques and advance our understanding of host genetic effects in SIV/SHIV models of HIV infection.


Virology | 2003

Simian immunodeficiency virus Nef gene regulates the production of 2-LTR circles in vivo

S Clarke; Neil Almond; Neil Berry

The replication dynamics of simian immunodeficiency virus (SIVmac32H-C8), attenuated through discrete genetic disruption of the nef gene, were compared with the wild-type parental clone (SIVmac32H-J5) using quantitative molecular methods. The primary viraemia of both infections were similar during the first week, but peaked on Day 10 at higher levels for wild-type virus. Viral RNA levels differed most markedly at Day 14. The frequency and levels of viral DNA species, detectable as gag provirus or circular 2-LTR episomes, differed depending on the virus and the lymphoid compartment sampled. 2-LTR circles persisted for prolonged periods in the peripheral blood but were never detected in any SIVmac32H C8-infected tissue, even if positive by gag PCR. Paradoxically, the converse was observed following wild-type infection. 2-LTR circles disappeared from the peripheral blood by Day 42 postinfection but persisted in lymphoid tissues. These findings are discussed in terms of nef and the role and stability of 2-LTR circle forms in vivo.


Journal of Virological Methods | 2011

Preparation and evaluation of the 1st international standard for the quantitation of HIV-2 RNA in plasma

Harvey Holmes; Neil Berry; Alan Heath; Clare Morris

An international standard for the quantitation of HIV-2 RNA in plasma samples was developed. A collaborative study involving 29 laboratories from 15 countries was carried out in order to evaluate HIV-2 RNA candidate materials for use with nucleic acid-based tests (NATs). Candidate reference standards consisted of duplicate copies of two HIV-2 genotype A viruses, HIV-2 CAM2 and HIV-2 ROD and were coded S1-S4. Each laboratory assayed all four candidates on at least three separate occasions and data were collated and analysed at NIBSC. Of the data sets returned the majority were from qualitative assays. All assays detected both candidate standards with the exception of one commercial assay, the Nuclisens Easy Q, which was designed primarily for HIV-1 detection which did not detect HIV-2 CAM2 but showed good detection of HIV-2 ROD. This highlighted possible cross reactivity with HIV-2 ROD with some NAT primer/probe combinations; as a result the HIV-2 CAM2 material was established as the 1st international standard for HIV-2 RNA with an assigned unitage of 1000 International Units (IU) per ampoule and is available upon request from the National Institute for Biological Standardisation and Control (NIBSC) (www.nibsc.ac.uk).


Biologicals | 2003

Simian cytomegalovirus and contamination of oral poliovirus vaccines

Sally A. Baylis; Nita Shah; Adrian Jenkins; Neil Berry; Philip D. Minor

In the 1950s the use of primary rhesus macaque kidney cultures to propagate poliovirus for vaccine production led to the contamination of vaccines with simian virus 40 (SV40). African green monkey kidney (AGMK) cultures free of SV40 were used as an alternative cell substrate for vaccine manufacture. In this study we evaluate oral poliovirus seeds, vaccine bulks and vaccines themselves for the presence of a common contaminant of AGMK cultures, simian cytomegalovirus (SCMV). Using sensitive polymerase chain reaction (PCR) techniques, nearly half of the samples analysed were found to be contaminated with SCMV sequences. However, vaccine bulks, positive by PCR for SCMV failed to show any evidence of infectious virus in these studies. One poliovirus vaccine and one seed, propagated on rhesus macaque kidney cultures were found to be positive for the rhesus monkey CMV by PCR.

Collaboration


Dive into the Neil Berry's collaboration.

Top Co-Authors

Avatar

Neil Almond

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Claire Ham

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Richard Stebbings

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Deborah Ferguson

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Mark Page

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Nicola J. Rose

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Adrian Jenkins

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward T. Mee

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

William Elsley

National Institute for Biological Standards and Control

View shared research outputs
Researchain Logo
Decentralizing Knowledge