Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Stebbings is active.

Publication


Featured researches published by Richard Stebbings.


Journal of General Virology | 1997

Mechanisms of protection induced by attenuated simian immunodeficiency virus. I. Protection cannot be transferred with immune serum.

Neil Almond; Jane Rose; Rebecca Sangster; Peter Silvera; Richard Stebbings; Barry Walker; Stott Ej

To evaluate its role in protection, immune serum was collected from four macaques which were chronically infected with live attenuated simian immunodeficiency virus (SIVmacC8) and had resisted challenge with wild-type SIVmacJ5. The immune serum was transferred to two naive cynomolgus macaques by intraperitoneal injection (11 ml/kg). Four control macaques received an intraperitoneal injection of normal saline. One day later, all macaques were challenged with 10 MID50 of the J5M challenge stock of SIV. After challenge, all macaques became infected as determined by virus co-culture and diagnostic PCR. Virus loads in PBMC at 2 weeks post-challenge were indistinguishable between the two groups of macaques. Thus, the failure of passive immunization to transfer protection indicates that serum components alone are not sufficient to mediate the potent protection obtained using live attenuated vaccines. This is the first time that serum has been transferred from animals known to be protected against superinfection.


Journal of Immunotoxicology | 2013

After TGN1412: Recent developments in cytokine release assays

Richard Stebbings; David Eastwood; Stephen Poole; Robin Thorpe

The failure of regulatory science to keep pace with and support the development of new biological medicines was very publically highlighted in March 2006 when the first-in-man Phase I clinical trial of the immunomodulatory CD28-specific monoclonal antibody (mAb) TGN1412 ended in disaster when all six volunteers suffered a life-threatening adverse reaction termed a ‘Cytokine Storm’. The poor predictive value of standard pre-clinical safety tests and animal models applied to TGN1412 demonstrated the need for a new generation of immunotoxicity assays and animal models that are both sensitive and predictive of clinical outcome in man. The non-predictive result obtained from pre-clinical safety testing in cynomolgus macaques has now been attributed to a lack of CD28 expression on CD4+ effector memory T-cells that therefore cannot be stimulated by TGN1412. In contrast, high levels of CD28 are expressed on human CD4+ effector memory T-cells, the source of most TGN1412-stimulated pro-inflammatory cytokines. Standard in vitro safety tests with human cells were also non-predictive as they did not replicate in vivo presentation of TGN1412. It was subsequently shown that, if an immobilized therapeutic mAb-based assay or endothelial cell co-culture assay was used to evaluate TGN1412, then these would have predicted a pro-inflammatory response in man. New in vitro assays based on these approaches are now being applied to emerging therapeutics to hopefully prevent a repeat of the TGN1412 incident. It has emerged that the mechanism of pro-inflammatory cytokine release stimulated by TGN1412 is different to that of other therapeutic mAbs, such that standard pro-inflammatory markers such as TNFα and IL-8 are not discriminatory. Rather, IL-2 release and lymphoproliferation are optimal readouts of a TGN1412-like pro-inflammatory response.


PLOS ONE | 2011

Early Potent Protection against Heterologous SIVsmE660 Challenge Following Live Attenuated SIV Vaccination in Mauritian Cynomolgus Macaques

Neil Berry; Claire Ham; Edward T. Mee; Nicola J. Rose; Giada Mattiuzzo; Adrian Jenkins; Mark Page; William Elsley; Mark Robinson; Deborah Smith; Deborah Ferguson; Greg J. Towers; Neil Almond; Richard Stebbings

Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system.


Vaccine | 2013

Immunogenicity of a recombinant measles HIV-1 subtype C vaccine.

Richard Stebbings; Bo Li; Clarisse Lorin; Marguerite Koutsoukos; Michèle Février; Edward T. Mee; Mark Page; Neil Almond; Frédéric Tangy; Gerald Voss

The HIV epidemic is greatest in Sub-Saharan Africa and India where HIV-1 subtype C is predominant. To control the spread of HIV in these parts of the world a preventive HIV-1 subtype C vaccine is urgently required. Here we report the immunogenicity of a candidate HIV-1 subtype C vaccine delivered by a recombinant measles vector carrying an insert encoding HIV-1 subtype C Gag, RT and Nef (MV1-F4), in MHC-typed non-human primates. HIV-1 specific cytokine secreting CD4+ and CD8+ T cell responses were detected in 15 out of 16 vaccinees. These HIV-specific T cell responses persisted in lymphoid tissues. Anti-HIV-1 antibody responses were detected in 15 out of 16 vaccinees and titres were boosted by a second immunisation carried out 84 days later. These findings support further exploration of the MV1-F4 vector as a candidate HIV-1 subtype C vaccine or as part of a wider vaccine strategy.


PLOS ONE | 2014

Early Biodistribution and Persistence of a Protective Live Attenuated SIV Vaccine Elicits Localised Innate Responses in Multiple Lymphoid Tissues

Deborah Ferguson; Giada Mattiuzzo; Claire Ham; Richard Stebbings; Bo Li; Nicola J. Rose; Edward T. Mee; Deborah Smith; Mark Page; Martin Cranage; Neil Almond; Greg J. Towers; Neil Berry

Vaccination of Mauritian cynomolgus macaques with the attenuated nef-truncated C8 variant of SIVmac251/32H (SIVmacC8) induces early, potent protection against pathogenic, heterologous challenge before the maturation of cognate immunity. To identify processes that contribute to early protection in this model the pathogenesis, anatomical distribution and viral vaccine kinetics were determined in relation to localised innate responses triggered by vaccination. The early biodistribution of SIVmacC8 was defined by rapid, widespread dissemination amongst multiple lymphoid tissues, detectable after 3 days. Cell-associated viral RNA dynamics identified mesenteric lymph nodes (MLN) and spleen, as well as the gut mucosae, as early major contributors of systemic virus burden. Rapid, localised infection was populated by discrete foci of persisting virus-infected cells. Localised productive infection triggered a broad innate response, with type-1 interferon sensitive IRF-7, STAT-1, TRIM5α and ApoBEC3G genes all upregulated during the acute phase but induction did not prevent viral persistence. Profound changes in vaccine-induced cell-surface markers of immune activation were detected on macrophages, B-cells and dendritic cells (DC-SIGN, S-100, CD40, CD11c, CD123 and CD86). Notably, high DC-SIGN and S100 staining for follicular and interdigitating DCs respectively, in MLN and spleen were detected by 3 days, persisting 20 weeks post-vaccination. Although not formally evaluated, the early biodistribution of SIVmacC8 simultaneously targets multiple lymphoid tissues to induce strong innate immune responses coincident at the same sites critical for early protection from wild-type viruses. HIV vaccines which stimulate appropriate innate, as well as adaptive responses, akin to those generated by live attenuated SIV vaccines, may prove the most efficacious.


Clinical Immunology | 2013

Immunoglobulin G1 and immunoglobulin G4 antibodies in multiple sclerosis patients treated with IFNβ interact with the endogenous cytokine and activate complement

Swaminathan Sethu; Karthik Govindappa; Paul Quinn; Meenu Wadhwa; Richard Stebbings; Mike Boggild; Dean J. Naisbitt; Ian Kimber; Munir Pirmohamed; Kevin Park; Jean Sathish

A subset of patients with relapsing-remitting multiple sclerosis (RRMS) on therapy with interferon beta (IFNβ) develop neutralising anti-drug antibodies (ADA) resulting in reduced, or loss of, therapeutic efficacy. The aims were to characterise the relative contributions of anti-IFNβ antibody isotypes to drug neutralising activity, ability of these antibodies to cross-react with endogenous IFNβ, to form immune complexes and activate complement. IFNβ-specific ADA were measured in plasma from RRMS patients treated with IFNβ1a (Rebif®). Neutralisation of endogenous and therapeutic IFNβ by ADA was determined by IFNβ bioassay. IFNβ-ADA profile was predominantly comprised of IgG1 and IgG4 antibody isotypes. The contribution of IgG4-ADA towards neutralising activity was found to be minimal. Neutralising IFNβ-ADA blocks endogenous IFNβ activity. ADA interaction with therapeutic IFNβ results in immune complex formation and complement activation. In summary, IgG1 and IgG4 IFNβ-ADA have the ability to neutralise therapeutic and endogenous protein and to activate complement.


Journal of General Virology | 2015

Live attenuated simian immunodeficiency virus vaccination confers superinfection resistance against macrophage-tropic and neurovirulent wild-type SIV challenge.

Neil Berry; Claire Ham; Jack Alden; Sean F. Clarke; Richard Stebbings; Jim Stott; Deborah Ferguson; Neil Almond

Vaccination with live attenuated simian immunodeficiency virus (SIV) in non-human primate species provides a means of characterizing the protective processes of retroviral superinfection and may lead to novel advances of human immunodeficiency virus (HIV)/AIDS vaccine design. The minimally attenuated SIVmacC8 vaccine has been demonstrated to elicit early potent protection against pathogenic rechallenge with genetically diverse viral isolates in cynomolgus macaques (Macaca fascicularis). In this study, we have characterized further the biological breadth of this vaccine protection by assessing the ability of both the nef-disrupted SIVmacC8 and its nef-intact counterpart SIVmacJ5 viruses to prevent superinfection with the macrophage/neurotropic SIVmac239/17E-Fr (SIVmac17E-Fr) isolate. Inoculation with either SIVmacC8 or SIVmacJ5 and subsequent detailed characterization of the viral replication kinetics revealed a wide range of virus–host outcomes. Both nef-disrupted and nef-intact immunizing viruses were able to prevent establishment of SIVmac17E-Fr in peripheral blood and secondary lymphoid tissues. Differences in virus kinetics, indicative of an active process, identified uncontrolled replication in one macaque which although able to prevent SIVmac17E-Fr superinfection led to extensive neuropathological complications. The ability to prevent a biologically heterologous, CD4-independent/CCR5+ viral isolate and the macrophage-tropic SIVmac316 strain from establishing infection supports the hypothesis that direct target cell blocking is unlikely to be a central feature of live lentivirus vaccination. These data provide further evidence to demonstrate that inoculation of a live retroviral vaccine can deliver broad spectrum protection against both macrophage-tropic as well as lymphocytotropic viruses. These data add to our knowledge of live attenuated SIV vaccines but further highlight potential safety concerns of vaccinating with a live retrovirus.


Retrovirology | 2012

Heterologous protection elicited by candidate monomeric recombinant HIV-1 gp120 vaccine in the absence of cross neutralising antibodies in a macaque model

Mark Page; Richard Stebbings; Neil Berry; Robin Hull; Deborah Ferguson; Leanne Davis; Laura Duffy; William Elsley; Joanna Hall; Claire Ham; Mark Hassall; Bo Li; Edward T. Mee; Ruby Quartey-Papafio; Nicola J. Rose; Nathalie Louise Mathy; Gerald Voss; E J Stott; Neil Almond

BackgroundCurrent data suggest that an efficacious human immunodeficiency virus type 1 (HIV-1) vaccine should elicit both adaptive humoral and cell mediated immune responses. Such a vaccine will also need to protect against infection from a range of heterologous viral variants. Here we have developed a simian-human immunodeficiency virus (SHIV) based model in cynomolgus macaques to investigate the breadth of protection conferred by HIV-1W61D recombinant gp120 vaccination against SHIVsbg and SHIVSF33 challenge, and to identify correlates of protection.ResultsHigh titres of anti-envelope antibodies were detected in all vaccinees. The antibodies reacted with both the homologous HIV-1W61D and heterologous HIV-1IIIB envelope rgp120 which has an identical sequence to the SHIVsbg challenge virus. Significant titres of virus neutralising antibodies were detected against SHIVW61D expressing an envelope homologous with the vaccine, but only limited cross neutralisation against SHIVsbg, SHIV-4 and SHIVSF33 was observed. Protection against SHIVsbg infection was observed in vaccinated animals but none was observed against SHIVSF33 challenge. Transfer of immune sera from vaccinated macaques to naive recipients did not confer protection against SHIVsbg challenge. In a follow-up study, T cell proliferative responses detected after immunisation with the same vaccine against a single peptide present in the second conserved region 2 of HIV-1 W61D and HIV-1 IIIB gp120, but not SF33 gp120.ConclusionsFollowing extended vaccination with a HIV-1 rgp120 vaccine, protection was observed against heterologous virus challenge with SHIVsbg, but not SHIVSF33. Protection did not correlate with serological responses generated by vaccination, but might be associated with T cell proliferative responses against an epitope in the second constant region of HIV-1 gp120. Broader protection may be obtained with recombinant HIV-1 envelope based vaccines formulated with adjuvants that generate proliferative T cell responses in addition to broadly neutralising antibodies.


Virology | 2004

Vaccination with live attenuated simian immunodeficiency virus for 21 days protects against superinfection

Richard Stebbings; Neil Berry; Jim Stott; Robin Hull; Barry Walker; Jenny Lines; William Elsley; Stuart Brown; Alison Wade-Evans; Gail Davis; Jenny Cowie; Meera Sethi; Neil Almond


Toxicology Letters | 2014

A wet-coat solid phase cytokine release assay is predictive of cytokine release caused by TGN1412

David Eastwood; Chris Bird; Meenu Wadhwa; Sandrine Vessillier; Robin Thorpe; Richard Stebbings

Collaboration


Dive into the Richard Stebbings's collaboration.

Top Co-Authors

Avatar

Neil Almond

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Neil Berry

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Claire Ham

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Deborah Ferguson

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Edward T. Mee

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Mark Page

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

Bo Li

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Nicola J. Rose

National Institute for Biological Standards and Control

View shared research outputs
Top Co-Authors

Avatar

William Elsley

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Barry Walker

National Institute for Biological Standards and Control

View shared research outputs
Researchain Logo
Decentralizing Knowledge