Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil D. Treat is active.

Publication


Featured researches published by Neil D. Treat.


Nature Chemistry | 2010

A versatile approach to high-throughput microarrays using thiol-ene chemistry

Nalini Gupta; Brian F. Lin; Luis M. Campos; Michael D. Dimitriou; Sherry T. Hikita; Neil D. Treat; Matthew Tirrell; Dennis O. Clegg; Edward J. Kramer; Craig J. Hawker

Microarray technology has become extremely useful in expediting the investigation of large libraries of materials in a variety of biomedical applications, such as in DNA chips, protein and cellular microarrays. In the development of cellular microarrays, traditional high-throughput printing strategies on stiff, glass substrates and non-covalent attachment methods are limiting. We have developed a facile strategy to fabricate multifunctional high-throughput microarrays embedded at the surface of a hydrogel substrate using thiol-ene chemistry. This user-friendly method provides a platform for the immobilization of a combination of bioactive and diagnostic molecules, such as peptides and dyes, at the surface of poly(ethylene glycol)-based hydrogels. The robust and orthogonal nature of thiol-ene chemistry allows for a range of covalent attachment strategies in a fast and reliable manner, and two complementary strategies for the attachment of active molecules are demonstrated.


Angewandte Chemie | 2011

1,4-Fullerene Derivatives: Tuning the Properties of the Electron Transporting Layer in Bulk-Heterojunction Solar Cells**

Alessandro Varotto; Neil D. Treat; Jang Jo; Christopher G. Shuttle; Nicolas A. Batara; Fulvio G. Brunetti; Jung Hwa Seo; Michael L. Chabinyc; Craig J. Hawker; Alan J. Heeger; Fred Wudl

Light and flexible photovoltaic devices based on organic materials are extensively studied as an alternative to expensive and fragile silicon-based solar cells. The efficiency of these devices is rapidly increasing with the most recent power conversion efficiency (PCE) of greater than 8% bringing them closer to commercial viability. Further improvements are needed and can be achieved by optimizing the ratio between donor and acceptor, modifying the electronic properties of the materials, and optimizing the morphology of the resulting bulk heterojunction (BHJ). A direct way to increase the efficiency is to lower the band gap of the donor material in order to absorb a greater fraction of the solar spectrum. This concept has been explored through the synthesis of a series of new low band gap polymers, which exhibit a decreased band gap as a result of lowering the lowest unoccupied molecular orbital (LUMO). An emerging challenge is the need for electronically compatible acceptors with sufficiently low LUMO levels so that charge separation is efficiently promoted. Optimum miscibility of a specific polymer and fullerene combination to create the optimum degree of phase separation is also a feature to take into account. Typically, the approach used to test new donor materials is to fabricate devices using PC61BM ([6,6]-phenyl-C61-butyric acid methyl ester), a well-studied benchmark acceptor. Only a limited number of other fullerene derivatives have been successfully employed. Although these fullerene derivatives bear different functional groups, they are related by the positioning of the substituents on carbons 1 and 2 of a six-membered ring. From literature studies it is apparent that even subtle modification of the nature and especially position of substituents can drastically alter the electronic properties of fullerene derivatives. For example, PC71BM has reduced symmetry that increases visible light absorption and has a positive effect on current generation in polymer BHJ cells. Here we report the synthesis of a series of novel fullerene derivatives functionalized through the “1,4” position and their use in organic photovoltaics (OPVs). Features that distinguish this class of fullerene derivatives are: 1) straightforward synthesis which includes versatility of functionalization with different substrates starting from the same material (fullerenol, Scheme 1); 2) tunable LUMO energy by appending electron-donating or electron-withdrawing groups; 3) lower symmetry which decreases the optical gap and produces an increased absorption in the visible (the extinction coefficient at 480 nm of a 1,4-adduct is approximately 8 times larger than that of PCBM) ; 4) tunable solubility which influences the morphology of the BHJ. Like PC71BM, 1,4addends have increased light absorption at ca. 500 nm (Figure 1) with the advantage that all the C60 derivatives


Annual Review of Physical Chemistry | 2014

Phase Separation in Bulk Heterojunctions of Semiconducting Polymers and Fullerenes for Photovoltaics

Neil D. Treat; Michael L. Chabinyc

Thin-film solar cells are an important source of renewable energy. The most efficient thin-film solar cells made with organic materials are blends of semiconducting polymers and fullerenes called the bulk heterojunction (BHJ). Efficient BHJs have a nanoscale phase-separated morphology that is formed during solution casting. This article reviews recent work to understand the nature of the phase-separation process resulting in the formation of the domains in polymer-fullerene BHJs. The BHJ is now viewed as a mixture of polymer-rich, fullerene-rich, and mixed polymer-fullerene domains. The formation of this structure can be understood through fundamental knowledge of polymer physics. The implications of this structure for charge transport and charge generation are given.


Journal of Materials Chemistry | 2011

In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells

Neil D. Treat; Chris G. Shuttle; Michael F. Toney; Craig J. Hawker; Michael L. Chabinyc

Bulk heterojunction organic solar cells hold much promise as commercially viable sources of renewable energy due to their relatively inexpensive fabrication. Developing a fundamental knowledge of how processing conditions influence solar power conversion efficiency will enable rational and efficient design, optimization, and control of new organic solar cell materials. In this report, we use a combination of in situ current–voltage measurements and grazing-incidence wide-angle X-ray scattering experiments at elevated temperature to correlate the changes in photoconversion efficiency to the changes in the molecular ordering of a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction active layer. In situ measurements of current–voltage characteristics were used to optimize the power conversion efficiency and the resulting thermal processing was in agreement with studies from repeated heating and cooling cycles. The improvements in short circuit current with thermal annealing were correlated to an increase in the population of face-on oriented crystallites of P3HT rather than improvements in molecular ordering of PCBM.


Advanced Science | 2015

High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices

Yen-Hung Lin; Hendrik Faber; John G. Labram; Emmanuel Stratakis; Labrini Sygellou; Emmanuel Kymakis; N. A. Hastas; Ruipeng Li; Kui Zhao; Aram Amassian; Neil D. Treat; Martyn A. McLachlan; Thomas D. Anthopoulos

High mobility thin‐film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin‐film transistors is reported that exploits the enhanced electron transport properties of low‐dimensional polycrystalline heterojunctions and quasi‐superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band‐like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature‐dependent electron transport and capacitance‐voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas‐like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll‐to‐roll, etc.) and can be seen as an extremely promising technology for application in next‐generation large area optoelectronics such as ultrahigh definition optical displays and large‐area microelectronics where high performance is a key requirement.


Journal of Materials Chemistry C | 2015

Highly efficient photochemical upconversion in a quasi-solid organogel

Kabilan Sripathy; Rowan W. MacQueen; Joshua R. Peterson; Yuen Yap Cheng; Miroslav Dvořák; Dane R. McCamey; Neil D. Treat; Natalie Stingelin; Timothy W. Schmidt

Despite the promise of photochemical upconversion as a means to extend the light-harvesting capabilities of a range of photovoltaic solar energy conversion devices, it remains a challenge to create efficient, solid-state upconverting materials. Until now, a material has yet to be found which is as efficient as a liquid composition. Here, a gelated photochemical upconversion material is reported with a performance indistinguishable from an otherwise identical liquid composition. The sensitizer phosphorescence lifetime, Stern–Volmer quenching constants and upconversion performance (6% under one-sun illumination) were all found to be unchanged in a quasi-solid gelated sample when compared to the liquid sample. The result paves the way to a new family of efficient photochemical upconversion materials comprised of macroscopically solid, but microscopically liquid gel, for application in photovoltaics and photocatalytic water-splitting.


Advanced Materials | 2016

Small Molecule/Polymer Blend Organic Transistors with Hole Mobility Exceeding 13 cm V−1 s−1

Alexandra F. Paterson; Neil D. Treat; Weimin Zhang; Zhuping Fei; Gwenhivir Wyatt-Moon; Hendrik Faber; G. Vourlias; P. Patsalas; Olga Solomeshch; Nir Tessler; Martin Heeney; Thomas D. Anthopoulos

A ternary organic semiconducting blend composed of a small-molecule, a conjugated polymer, and a molecular p-dopant is developed and used in solution-processed organic transistors with hole mobility exceeding 13 cm(2) V(-1) s(-1) (see the Figure). It is shown that key to this development is the incorporation of the p-dopant and the formation of a vertically phase-separated film microstructure.


Advanced Materials | 2015

Toward Additive‐Free Small‐Molecule Organic Solar Cells: Roles of the Donor Crystallization Pathway and Dynamics

Maged Abdelsamie; Neil D. Treat; Kui Zhao; Caitlin McDowell; Mark A. Burgers; Ruipeng Li; Detlef-M. Smilgies; Natalie Stingelin; Guillermo C. Bazan; Aram Amassian

The ease with which small-molecule donors crystallize during solution processing is directly linked to the need for solvent additives. Donor molecules that get trapped in disordered (H1) or liquid crystalline (T1) mesophases require additive processing to promote crystallization, phase separation, and efficient light harvesting. A donor material (X2) that crystallizes directly from solution yields additive-free solar cells with an efficiency of 7.6%.


Applied Physics Letters | 2015

Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells

Neil D. Treat; Nir Yaacobi-Gross; Hendrik Faber; Ajay Perumal; Donal D. C. Bradley; Natalie Stingelin; Thomas D. Anthopoulos

We report the advantageous properties of the inorganic molecular semiconductor copper(I) thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic (OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at −5.35 eV, 0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], which produces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-based devices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditions is achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achieve PCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacement for the commonly used PEDOT:PSS.


Journal of Materials Chemistry | 2014

Use of a commercially available nucleating agent to control the morphological development of solution-processed small molecule bulk heterojunction organic solar cells

Alexander Sharenko; Neil D. Treat; John A. Love; Michael F. Toney; Natalie Stingelin; Thuc-Quyen Nguyen

The nucleating agent DMDBS is used to modulate the crystallization of solution-processed small molecule donor molecules in bulk heterojunction organic photovoltaic (BHJ OPV) devices. This control over donor molecule crystallization leads to a reduction in optimized thermal annealing times as well as smaller donor molecule crystallites, and therefore more efficient devices, when using an excessive amount of solvent additive. We therefore demonstrate the use of nucleating agents as a powerful and versatile processing strategy for solution-processed, small molecule BHJ OPVs.

Collaboration


Dive into the Neil D. Treat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie Stingelin

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael F. Toney

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bertrand J. Tremolet de Villers

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Fred Wudl

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge