Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neil S. Holden is active.

Publication


Featured researches published by Neil S. Holden.


Molecular Pharmacology | 2007

Separating Transrepression and Transactivation: A Distressing Divorce for the Glucocorticoid Receptor?

Robert Newton; Neil S. Holden

Glucocorticoids (corticosteroids) are highly effective in combating inflammation in the context of a variety of diseases. However, clinical utility can be compromised by the development of side effects, many of which are attributed to the ability of the glucocorticoid receptor (GR) to induce the transcription of, or transactivate, certain genes. By contrast, the anti-inflammatory effects of glucocorticoids are due largely to their ability to reduce the expression of pro-inflammatory genes. This effect has been predominantly attributed to the repression of key inflammatory transcription factors, including AP-1 and NF-κB, and is termed transrepression. The ability to functionally separate these transcriptional functions of GR has prompted a search for dissociated GR ligands that can differentially induce transrepression but not transactivation. In this review, we present evidence that post-transcriptional mechanisms of action are highly important to the anti-inflammatory actions of glucocorticoids. Furthermore, we present the case that mechanistically distinct forms of glucocorticoid-inducible gene expression are critical to the development of anti-inflammatory effects by repressing inflammatory signaling pathways and inflammatory gene expression at multiple levels. Considerable care is therefore required to avoid loss of anti-inflammatory effectiveness in the development of novel transactivation-defective ligands of GR.


Journal of Biological Chemistry | 2009

Inhibition of NF-kappaB-dependent transcription by MKP-1: transcriptional repression by glucocorticoids occurring via p38 MAPK

Elizabeth M. King; Neil S. Holden; Wei Gong; Christopher F. Rider; Robert Newton

Acting via the glucocorticoid receptor (GR), glucocorticoids exert potent anti-inflammatory effects partly by repressing inflammatory gene transcription occurring via factors such as NF-κB. In the present study, the synthetic glucocorticoid, dexamethasone, induces expression of MKP-1 (mitogen-activated protein kinase (MAPK) phosphatase-1) in human bronchial epithelial (BEAS-2B) and pulmonary (A549) cells. This correlates with reduced TNFα-stimulated p38 MAPK phosphorylation. Since NF-κB-dependent transcription and IL-8 protein, mRNA, and unspliced RNA (a surrogate of transcription rate) are sensitive to p38 MAPK inhibitors (SB203580 and SB239063), we explored the role of MKP-1 in repression of these outputs. Repression of TNFα-induced p38 MAPK phosphorylation, NF-κB-dependent transcription, and IL-8 expression by dexamethasone are sensitive to transcriptional or translational inhibitors. This indicates a role for de novo gene synthesis. Adenoviral expression of MKP-1 profoundly reduces p38 MAPK phosphorylation and IL-8 expression. Similarly, NF-κB-dependent transcription is significantly reduced to levels consistent with maximal p38 MAPK inhibition. Thus, MKP-1 attenuates TNFα-dependent activation of p38 MAPK, induction of IL-8 expression, and NF-κB-dependent transcription. Small interfering RNA knockdown of dexamethasone-induced MKP-1 expression partially reverses the repression of TNFα-activated p38 MAPK, demonstrating that MKP-1 participates in the dexamethasone-dependent repression of this pathway. In the presence of MKK6 (MAPK kinase 6), a p38 MAPK activator, dexamethasone dramatically represses TNFα-induced NF-κB-dependent transcription, and this is significantly reversed by MKP-1-targeting small interfering RNA. This reveals an important and novel role for transcriptional activation (transactivation) of MKP-1 in the repression of NF-κB-dependent transcription by glucocorticoids. We conclude that GR transactivation is essential to the anti-inflammatory properties of GR ligands.Acting via the glucocorticoid receptor (GR), glucocorticoids exert potent anti-inflammatory effects partly by repressing inflammatory gene transcription occurring via factors such as NF-kappaB. In the present study, the synthetic glucocorticoid, dexamethasone, induces expression of MKP-1 (mitogen-activated protein kinase (MAPK) phosphatase-1) in human bronchial epithelial (BEAS-2B) and pulmonary (A549) cells. This correlates with reduced TNFalpha-stimulated p38 MAPK phosphorylation. Since NF-kappaB-dependent transcription and IL-8 protein, mRNA, and unspliced RNA (a surrogate of transcription rate) are sensitive to p38 MAPK inhibitors (SB203580 and SB239063), we explored the role of MKP-1 in repression of these outputs. Repression of TNFalpha-induced p38 MAPK phosphorylation, NF-kappaB-dependent transcription, and IL-8 expression by dexamethasone are sensitive to transcriptional or translational inhibitors. This indicates a role for de novo gene synthesis. Adenoviral expression of MKP-1 profoundly reduces p38 MAPK phosphorylation and IL-8 expression. Similarly, NF-kappaB-dependent transcription is significantly reduced to levels consistent with maximal p38 MAPK inhibition. Thus, MKP-1 attenuates TNFalpha-dependent activation of p38 MAPK, induction of IL-8 expression, and NF-kappaB-dependent transcription. Small interfering RNA knockdown of dexamethasone-induced MKP-1 expression partially reverses the repression of TNFalpha-activated p38 MAPK, demonstrating that MKP-1 participates in the dexamethasone-dependent repression of this pathway. In the presence of MKK6 (MAPK kinase 6), a p38 MAPK activator, dexamethasone dramatically represses TNFalpha-induced NF-kappaB-dependent transcription, and this is significantly reversed by MKP-1-targeting small interfering RNA. This reveals an important and novel role for transcriptional activation (transactivation) of MKP-1 in the repression of NF-kappaB-dependent transcription by glucocorticoids. We conclude that GR transactivation is essential to the anti-inflammatory properties of GR ligands.


Journal of Pharmacology and Experimental Therapeutics | 2007

Repression of Inflammatory Gene Expression in Human Pulmonary Epithelial Cells by Small-Molecule IκB Kinase Inhibitors

Robert Newton; Neil S. Holden; Matthew C. Catley; Wale Oyelusi; Richard Leigh; David Proud; Peter J. Barnes

The airway epithelium is critical in the pathogenesis of chronic inflammatory diseases, such as asthma and chronic obstructive pulmonary disease, and, by expressing numerous inflammatory genes, plays a prominent role in disease exacerbations. Since inflammatory gene expression often involves the transcription factor nuclear factor (NF)-κB, this signaling pathway represents a site for anti-inflammatory intervention. As the airway epithelium is targeted by inhaled therapeutic agents, for example corticosteroids, human A549 pulmonary cells and primary human bronchial epithelial (HBE) cells were selected to evaluate inhibitor of κB kinase (IKK) inhibitors. In A549 cells, interleukin (IL)-1β and tumor necrosis factor (TNF) α increased phosphorylation of IκBα, and this was followed by loss of IκBα, induction of NF-κB DNA binding, and the induction of NF-κB-dependent transcription. These events were repressed by the IKK-selective inhibitors, PS-1145 [N-(6-chloro-9H-β-carbolin-8-ly) nicotinamide] and ML120B [N-(6-chloro-7-methoxy-9H-β-carbolin-8-yl)-2-methyl-nicotinamide]. Inhibition of NF-κB-dependent transcription was concentration-dependent and correlated with loss of intercellular adhesion molecule (ICAM)-1 expression. Similarly, IL-1β- and TNFα-induced expression of IL-6, IL-8, granulocyte macrophage-colony-stimulating factor (GM-CSF), regulated and activation normal T cell expressed and secreted (RANTES), growth-related oncogene α, and monocyte chemotactic protein-1 (MCP-1) was also significantly repressed. Likewise, PS-1145 and ML120B profoundly reduced NF-κB-dependent transcription induced by IL-1β and TNFα in primary HBE cells. Parallel effects on ICAM-1 expression and a significant repression of IL-8 release were observed. In contrast, the corticosteroid, dexamethasone, was without effect on NF-κB-dependent transcription or the expression of ICAM-1. The above data provide strong support for an anti-inflammatory effect of IKK2 inhibitors acting on the pulmonary epithelium and suggest that such compounds may prove beneficial in situations where traditional corticosteroid therapies prove inadequate.


FEBS Letters | 2003

IL-1β-dependent activation of NF-κB mediates PGE2 release via the expression of cyclooxygenase-2 and microsomal prostaglandin E synthase

Matthew C. Catley; Joanna E. Chivers; Lisa M. Cambridge; Neil S. Holden; Donna M. Slater; Karl J. Staples; Martin W. Bergmann; Peter Löser; Peter J. Barnes; Robert Newton

Prostaglandin (PG) E2 release is induced in pulmonary A549 cells by the NF‐κB‐activating stimuli interleukin‐1β (IL‐1β) and phorbol 12‐myristate 13‐acetate (PMA). Adenoviral over‐expression of IκBαΔN, a dominant NF‐κB inhibitor, prevents NF‐κB‐dependent transcription and was used to qualify the role of NF‐κB in the release of PGE2. IκBαΔN repressed IL‐1β‐induced, but not PMA‐induced, cycloxygenase‐2 (COX‐2) and microsomal prostaglandin E synthase (mPGES) expression. These data conclusively demonstrate a substantial role for NF‐κB in the co‐ordinate induction of COX‐2, mPGES and in the corresponding release of PGE2 by IL‐1β. However, other pathways are primarily responsible for PGE2 release induced by PMA.


Cellular Signalling | 2008

Phorbol ester-stimulated NF-κB-dependent transcription : Roles for isoforms of novel protein kinase C

Neil S. Holden; Paul E. Squires; Manminder Kaur; Rosemary Bland; Carol E. Jones; Robert Newton

Since protein kinase C (PKC) isoforms are variously implicated in the activation of NF-kappaB, we have investigated the role of PKC in the activation of NF-kappaB-dependent transcription by the diacyl glycerol (DAG) mimetic, phorbol 12-myristate 13-acetate (PMA), and by tumour necrosis factor (TNF) alpha in pulmonary A549 cells. The PKC selective inhibitors, Ro31-8220, Gö6976, GF109203X and Gö6983, revealed no effect on TNFalpha-induced NF-kappaB DNA binding and a similar lack of effect on serine 32/36 phosphorylated IkappaBalpha and the loss of total IkappaBalpha indicates that activation of the core IKK-IkappaBalpha-NF-kappaB cascade by TNFalpha does not involve PKC. In contrast, differential sensitivity of an NF-kappaB-dependent reporter to Ro31-8220, Gö6976, GF109203X and Gö6983 (EC(50)s 0.46 microM, 0.34 microM, >10 microM and >10 microM respectively) suggests a role for protein kinase D in transcriptional activation by TNFalpha. Compared with TNFalpha, PMA weakly induces NF-kappaB DNA binding and this effect was not associated with serine 32/36 phosphorylation of IkappaBalpha. However, PMA-stimulated NF-kappaB DNA binding was inhibited by Ro31-8220 (10 microM), GF109203X (10 microM) and Gö6983 (10 microM), but not by Gö6976 (10 microM), suggesting a role for novel PKC isoforms. Furthermore, a lack of positive effect of calcium mobilising agents on both NF-kappaB DNA binding and on transcriptional activation argues against major roles for classical PKCs. This, combined with the ability of both GF109203X and Gö6983 to prevent enhancement of TNFalpha-induced NF-kappaB-dependent transcription by PMA, further indicates a role for novel PKCs in NF-kappaB transactivation. Finally, siRNA-mediated knockdown of PKCdelta and epsilon expression did not affect TNFalpha-induced NF-kappaB-dependent transcription. However, knockdown of PKCdelta expression significantly inhibited PMA-stimulated luciferase activity, whereas knockdown of PKCepsilon was without effect. Furthermore, combined knockdown of PKCdelta and epsilon revealed an increased inhibitory effect on PMA-stimulated NF-kappaB-dependent transcription suggesting that PMA-induced NF-kappaB-dependent transcription is driven by novel PKC isoforms, particularly PKCdelta and epsilon.


Molecular Pharmacology | 2006

Analysis of the dissociated steroid RU24858 does not exclude a role for inducible genes in the anti-inflammatory actions of glucocorticoids.

Joanna E. Chivers; Wei Gong; Elizabeth M. King; Joachim Seybold; Judith C.W. Mak; Louise E. Donnelly; Neil S. Holden; Robert Newton

Although repression of inflammatory gene expression makes glucocorticoids powerful anti-inflammatory agents, side effects limit usage and drive the search for improved glucocorticoid receptor (GR) ligands. In A549 pulmonary cells, dexamethasone and the prototypical dissociated ligand RU24858 (Mol Endocrinol 11:1245-1255, 1997) repress interleukin (IL)-1β-induced expression of cyclooxygenase (COX)-2 and IL-8. Although RU24858 is a weaker GR ligand, both glucocorticoids showed similar efficacies on transrepression of nuclear factor κB (NF-κB)-dependent transcription, whereas RU24858 yielded less than 12% of the response to dexamethasone on a classic glucocorticoid response element (GRE) reporter (transactivation). Modest NF-κB-dependent transrepression (∼40%), along with analysis of IL-8 transcription rate and the accumulation of unspliced nuclear RNA, indicates that transrepression does not fully account for the repression of genes such as IL-8. This was confirmed by the finding that mRNA degradation is increased by both dexamethasone and RU24858. Analysis of IL-1β-induced steady-state mRNA levels for IL-8 and COX-2 show that dexamethasone- and RU24858-dependent repression of these genes is attenuated by inhibitors of transcription and protein synthesis. Because similar effects were observed with respect to COX-2 and IL-8 protein expression, we conclude that glucocorticoid-dependent gene expression is necessary for repression by both glucocorticoids. Despite RU24858 being defective at classic GRE-dependent transactivation, both dexamethasone and RU24858 induced the expression of potentially anti-inflammatory genes and metabolic genes, suggesting the importance of nontraditional glucocorticoid-dependent gene expression. Thus, classic transactivation- and transrepressionbased screens for anti-inflammatory “dissociated” GR ligands may be flawed because they may not reflect the effects on real glucocorticoid-inducible genes.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

Effect of β2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells : a role for protein kinase A

Manminder Kaur; Neil S. Holden; Sylvia M. Wilson; Maria B. Sukkar; Kian Fan Chung; Peter J. Barnes; Robert Newton; Mark A. Giembycz

In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.


BioDrugs | 2003

Inhibitors of p38 Mitogen-Activated Protein Kinase

Robert Newton; Neil S. Holden

Asthma is an inflammatory disease of the airways, which in patients with mild to moderate symptoms is adequately controlled by either β2-adrenoceptor agonists or corticosteroids, or a combination of both. Despite this, there are classes of patients that fail to respond to these treatments. In addition, there is a general trend towards increasing morbidity and mortality due to asthma, which suggests that there is a need for new and improved treatments. The p38 mitogen-activated protein kinases (MAPKs) represent a point of convergence for multiple signalling processes that are activated in inflammation and that impact on a diverse range of events that are important in inflammation. Small molecule pyridinyl imidazole inhibitors of p38 MAPK have proved to be highly effective in reducing various parameters of inflammation, in particular cytokine expression. Like corticosteroids, inhibitors of p38 MAPK appear to be able to repress gene expression at multiple levels, for example, by transcriptional, posttranscriptional and translational repression, and this raises the possibility of a similarly broad spectrum of anti-inflammatory activities. Indeed these molecules have proved to be effective in numerous in vitro and in vivo models of inflammation and septicaemia, which suggests that such compounds may be effective as therapeutic agents against inflammatory disorders. Despite these very promising indications of the possible therapeutic use of p38 MAPK inhibitors, a number of events that are p38-dependent are in fact also beneficial to the resolution or modulation of diseases such as asthma. We conclude that the overall effect of p38 MAPK inhibition would be beneficial in inflammatory diseases such as rheumatoid arthritis and asthma. However, these drugs may result in a complex phenotype that will require careful evaluation. Currently, a number of second or third generation inhibitors of p38 MAPK are being tested in phase I and phase II clinical trials.


British Journal of Pharmacology | 2012

Corticosteroid-induced gene expression in allergen-challenged asthmatic subjects taking inhaled budesonide.

Margaret M. Kelly; Elizabeth M. King; Christopher F. Rider; Carol Gwozd; Neil S. Holden; Jane Eddleston; Bruce L. Zuraw; Richard Leigh; Paul M. O'Byrne; Robert Newton

BACKGROUND AND PURPOSE Inhaled corticosteroids (ICS) are the cornerstone of asthma pharmacotherapy and, acting via the glucocorticoid receptor (GR), reduce inflammatory gene expression. While this is often attributed to a direct inhibitory effect of the GR on inflammatory gene transcription, corticosteroids also induce the expression of anti‐inflammatory genes in vitro. As there are no data to support this effect in asthmatic subjects taking ICS, we have assessed whether ICS induce anti‐inflammatory gene expression in subjects with atopic asthma.


Proceedings of the National Academy of Sciences of the United States of America | 2011

β2-Adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids

Neil S. Holden; Matthew J. Bell; Christopher F. Rider; Elizabeth M. King; David D. Gaunt; Richard Leigh; Malcolm Johnson; David P. Siderovski; Scott P. Heximer; Mark A. Giembycz; Robert Newton

In asthma and chronic obstructive pulmonary disease, activation of Gq-protein–coupled receptors causes bronchoconstriction. In each case, the management of moderate-to-severe disease uses inhaled corticosteroid (glucocorticoid)/long-acting β2-adrenoceptor agonist (LABA) combination therapies, which are more efficacious than either monotherapy alone. In primary human airway smooth muscle cells, glucocorticoid/LABA combinations synergistically induce the expression of regulator of G-protein signaling 2 (RGS2), a GTPase-activating protein that attenuates Gq signaling. Functionally, RGS2 reduced intracellular free calcium flux elicited by histamine, methacholine, leukotrienes, and other spasmogens. Furthermore, protection against spasmogen-increased intracellular free calcium, following treatment for 6 h with LABA plus corticosteroid, was dependent on RGS2. Finally, Rgs2-deficient mice revealed enhanced bronchoconstriction to spasmogens and an absence of LABA-induced bronchoprotection. These data identify RGS2 gene expression as a genomic mechanism of bronchoprotection that is induced by glucocorticoids plus LABAs in human airway smooth muscle and provide a rational explanation for the clinical efficacy of inhaled corticosteroid (glucocorticoid)/LABA combinations in obstructive airways diseases.

Collaboration


Dive into the Neil S. Holden's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manminder Kaur

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Gong

University of Calgary

View shared research outputs
Top Co-Authors

Avatar

Peter J. Barnes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Matthew C. Catley

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge