Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thor D. Stein is active.

Publication


Featured researches published by Thor D. Stein.


Science Translational Medicine | 2012

Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

Lee E. Goldstein; Andrew Fisher; Chad Tagge; Xiao-lei Zhang; Libor Velíšek; John Sullivan; Chirag Upreti; Jonathan M. Kracht; Maria Ericsson; Mark Wojnarowicz; Cezar Goletiani; Giorgi Maglakelidze; Noel Casey; Juliet A. Moncaster; Olga Minaeva; Robert D. Moir; Christopher J. Nowinski; Robert A. Stern; Robert C. Cantu; James Geiling; Jan Krzysztof Blusztajn; Benjamin Wolozin; Tsuneya Ikezu; Thor D. Stein; Andrew E. Budson; Neil W. Kowall; David Chargin; Andre Sharon; Sudad Saman; Garth F. Hall

Blast exposure is associated with chronic traumatic encephalopathy, impaired neuronal function, and persistent cognitive deficits in blast-exposed military veterans and experimental animals. Blast Brain: An Invisible Injury Revealed Traumatic brain injury (TBI) is the “signature” injury of the conflicts in Afghanistan and Iraq and is associated with psychiatric symptoms and long-term cognitive disability. Recent estimates indicate that TBI may affect 20% of the 2.3 million U.S. servicemen and women deployed since 2001. Chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disorder reported in athletes with multiple concussions, shares clinical features with TBI in military personnel exposed to explosive blast. However, the connection between TBI and CTE has not been explored in depth. In a new study, Goldstein et al. investigate this connection in the first case series of postmortem brains from U.S. military veterans with blast exposure and/or concussive injury. They report evidence for CTE neuropathology in the military veteran brains that is similar to that observed in the brains of young amateur American football players and a professional wrestler. The investigators developed a mouse model of blast neurotrauma that mimics typical blast conditions associated with military blast injury and discovered that blast-exposed mice also demonstrate CTE neuropathology, including tau protein hyperphosphorylation, myelinated axonopathy, microvascular damage, chronic neuroinflammation, and neurodegeneration. Surprisingly, blast-exposed mice developed CTE neuropathology within 2 weeks after exposure to a single blast. In addition, the neuropathology was accompanied by functional deficits, including slowed axonal conduction, reduced activity-dependent long-term synaptic plasticity, and impaired spatial learning and memory that persisted for 1 month after exposure to a single blast. The investigators then showed that blast winds with velocities of more than 330 miles/hour—greater than the most intense wind gust ever recorded on earth—induced oscillating head acceleration of sufficient intensity to injure the brain. The researchers then demonstrated that blast-induced learning and memory deficits in the mice were reduced by immobilizing the head during blast exposure. These findings provide a direct connection between blast TBI and CTE and indicate a primary role for blast wind–induced head acceleration in blast-related neurotrauma and its aftermath. This study also validates a new blast neurotrauma mouse model that will be useful for developing new diagnostics, therapeutics, and rehabilitative strategies for treating blast-related TBI and CTE. Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.


Acta Neuropathologica | 2014

Primary age-related tauopathy (PART): a common pathology associated with human aging

John F. Crary; John Q. Trojanowski; Julie A. Schneider; Jose F. Abisambra; Erin L. Abner; Irina Alafuzoff; Steven E. Arnold; Johannes Attems; Thomas G. Beach; Eileen H. Bigio; Nigel J. Cairns; Dennis W. Dickson; Marla Gearing; Lea T. Grinberg; Patrick R. Hof; Bradley T. Hyman; Kurt A. Jellinger; Gregory A. Jicha; Gabor G. Kovacs; David Knopman; Julia Kofler; Walter A. Kukull; Ian R. Mackenzie; Eliezer Masliah; Ann C. McKee; Thomas J. Montine; Melissa E. Murray; Janna H. Neltner; Ismael Santa-Maria; William W. Seeley

We recommend a new term, “primary age-related tauopathy” (PART), to describe a pathology that is commonly observed in the brains of aged individuals. Many autopsy studies have reported brains with neurofibrillary tangles (NFTs) that are indistinguishable from those of Alzheimer’s disease (AD), in the absence of amyloid (Aβ) plaques. For these “NFT+/Aβ−” brains, for which formal criteria for AD neuropathologic changes are not met, the NFTs are mostly restricted to structures in the medial temporal lobe, basal forebrain, brainstem, and olfactory areas (bulb and cortex). Symptoms in persons with PART usually range from normal to amnestic cognitive changes, with only a minority exhibiting profound impairment. Because cognitive impairment is often mild, existing clinicopathologic designations, such as “tangle-only dementia” and “tangle-predominant senile dementia”, are imprecise and not appropriate for most subjects. PART is almost universally detectable at autopsy among elderly individuals, yet this pathological process cannot be specifically identified pre-mortem at the present time. Improved biomarkers and tau imaging may enable diagnosis of PART in clinical settings in the future. Indeed, recent studies have identified a common biomarker profile consisting of temporal lobe atrophy and tauopathy without evidence of Aβ accumulation. For both researchers and clinicians, a revised nomenclature will raise awareness of this extremely common pathologic change while providing a conceptual foundation for future studies. Prior reports that have elucidated features of the pathologic entity we refer to as PART are discussed, and working neuropathological diagnostic criteria are proposed.


Acta Neuropathologica | 2016

The first NINDS/NIBIB consensus meeting to define neuropathological criteria for the diagnosis of chronic traumatic encephalopathy

Ann C. McKee; Nigel J. Cairns; Dennis W. Dickson; Rebecca D. Folkerth; C. Dirk Keene; Irene Litvan; Daniel P. Perl; Thor D. Stein; Jean-Paul Vonsattel; William Stewart; Yorghos Tripodis; John F. Crary; Kevin F. Bieniek; Kristen Dams-O’Connor; Victor E. Alvarez; Wayne A. Gordon

Chronic traumatic encephalopathy (CTE) is a neurodegeneration characterized by the abnormal accumulation of hyperphosphorylated tau protein within the brain. Like many other neurodegenerative conditions, at present, CTE can only be definitively diagnosed by post-mortem examination of brain tissue. As the first part of a series of consensus panels funded by the NINDS/NIBIB to define the neuropathological criteria for CTE, preliminary neuropathological criteria were used by 7 neuropathologists to blindly evaluate 25 cases of various tauopathies, including CTE, Alzheimer’s disease, progressive supranuclear palsy, argyrophilic grain disease, corticobasal degeneration, primary age-related tauopathy, and parkinsonism dementia complex of Guam. The results demonstrated that there was good agreement among the neuropathologists who reviewed the cases (Cohen’s kappa, 0.67) and even better agreement between reviewers and the diagnosis of CTE (Cohen’s kappa, 0.78). Based on these results, the panel defined the pathognomonic lesion of CTE as an accumulation of abnormal hyperphosphorylated tau (p-tau) in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci and in an irregular pattern. The group also defined supportive but non-specific p-tau-immunoreactive features of CTE as: pretangles and NFTs affecting superficial layers (layers II–III) of cerebral cortex; pretangles, NFTs or extracellular tangles in CA2 and pretangles and proximal dendritic swellings in CA4 of the hippocampus; neuronal and astrocytic aggregates in subcortical nuclei; thorn-shaped astrocytes at the glial limitans of the subpial and periventricular regions; and large grain-like and dot-like structures. Supportive non-p-tau pathologies include TDP-43 immunoreactive neuronal cytoplasmic inclusions and dot-like structures in the hippocampus, anteromedial temporal cortex and amygdala. The panel also recommended a minimum blocking and staining scheme for pathological evaluation and made recommendations for future study. This study provides the first step towards the development of validated neuropathological criteria for CTE and will pave the way towards future clinical and mechanistic studies.


Acta Neuropathologica | 2014

The neuropathology of sport

Ann C. McKee; Daniel H. Daneshvar; Victor E. Alvarez; Thor D. Stein

The benefits of regular exercise, physical fitness and sports participation on cardiovascular and brain health are undeniable. Physical activity reduces the risk for cardiovascular disease, type 2 diabetes, hypertension, obesity, and stroke, and produces beneficial effects on cholesterol levels, antioxidant systems, inflammation, and vascular function. Exercise also enhances psychological health, reduces age-related loss of brain volume, improves cognition, reduces the risk of developing dementia, and impedes neurodegeneration. Nonetheless, the play of sports is associated with risks, including a risk for mild TBI (mTBI) and, rarely, catastrophic traumatic injury and death. There is also growing awareness that repetitive mTBIs, such as concussion and subconcussion, can occasionally produce persistent cognitive, behavioral, and psychiatric problems as well as lead to the development of a neurodegeneration, chronic traumatic encephalopathy (CTE). In this review, we summarize the beneficial aspects of sports participation on psychological, emotional, physical and cognitive health, and specifically analyze some of the less common adverse neuropathological outcomes, including concussion, second-impact syndrome, juvenile head trauma syndrome, catastrophic sudden death, and CTE. CTE is a latent neurodegeneration clinically associated with behavioral changes, executive dysfunction and cognitive impairments, and pathologically characterized by frontal and temporal lobe atrophy, neuronal and axonal loss, and abnormal deposits of paired helical filament (PHF)-tau and 43xa0kDa TAR deoxyribonucleic acid (DNA)-binding protein (TDP-43). CTE often occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including motor neuron disease (CTE-MND). Although the incidence and prevalence of CTE are not known, CTE has been reported most frequently in American football players and boxers. Other sports associated with CTE include ice hockey, professional wrestling, soccer, rugby, and baseball.


Acta Neuropathologica | 2015

Beta-amyloid deposition in chronic traumatic encephalopathy.

Thor D. Stein; Philip H. Montenigro; Victor E. Alvarez; Weiming Xia; John F. Crary; Yorghos Tripodis; Daniel H. Daneshvar; Jesse Mez; Todd M. Solomon; Gaoyuan Meng; Caroline A. Kubilus; Kerry Cormier; Steven Meng; Katharine J. Babcock; Patrick T. Kiernan; Lauren Murphy; Christopher J. Nowinski; Brett Martin; Diane Dixon; Robert A. Stern; Robert C. Cantu; Neil W. Kowall; Ann C. McKee

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with repetitive mild traumatic brain injury. It is defined pathologically by the abnormal accumulation of tau in a unique pattern that is distinct from other tauopathies, including Alzheimer’s disease (AD). Although trauma has been suggested to increase amyloid β peptide (Aβ) levels, the extent of Aβ deposition in CTE has not been thoroughly characterized. We studied a heterogeneous cohort of deceased athletes and military veterans with neuropathologically diagnosed CTE (nxa0=xa0114, mean age at deathxa0=xa060) to test the hypothesis that Aβ deposition is altered in CTE and associated with more severe pathology and worse clinical outcomes. We found that Aβ deposition, either as diffuse or neuritic plaques, was present in 52xa0% of CTE subjects. Moreover, Aβ deposition in CTE occurred at an accelerated rate and with altered dynamics in CTE compared to a normal aging population (ORxa0=xa03.8, pxa0<xa00.001). We also found a clear pathological and clinical dichotomy between those CTE cases with Aβ plaques and those without. Aβ deposition was significantly associated with the presence of the APOE ε4 allele (pxa0=xa00.035), older age at symptom onset (pxa0<xa00.001), and older age at death (pxa0<xa00.001). In addition, when controlling for age, neuritic plaques were significantly associated with increased CTE tauopathy stage (βxa0=xa02.43, pxa0=xa00.018), co-morbid Lewy body disease (ORxa0=xa05.01, pxa0=xa00.009), and dementia (ORxa0=xa04.45, pxa0=xa00.012). A subset of subjects met the diagnostic criteria for both CTE and AD, and in these subjects both Aβ plaques and total levels of Aβ1-40 were increased at the depths of the cortical sulcus compared to the gyral crests. Overall, these findings suggest that Aβ deposition is altered and accelerated in a cohort of CTE subjects compared to normal aging and that Aβ is associated with both pathological and clinical progression of CTE independent of age.


Molecular and Cellular Neuroscience | 2015

Post-traumatic neurodegeneration and chronic traumatic encephalopathy

Daniel H. Daneshvar; Lee E. Goldstein; Patrick T. Kiernan; Thor D. Stein; Ann C. McKee

Traumatic brain injury (TBI) is a leading cause of mortality and morbidity around the world. Concussive and subconcussive forms of closed-head injury due to impact or blast neurotrauma represent the most common types of TBI in civilian and military settings. It is becoming increasingly evident that TBI can lead to persistent, long-term debilitating effects, and in some cases, progressive neurodegeneration and chronic traumatic encephalopathy (CTE). The epidemiological literature suggests that a single moderate-to-severe TBI may be associated with accelerated neurodegeneration and increased risk of Alzheimers disease, Parkinsons disease, or motor neuron disease. However, the pathologic phenotype of these post-traumatic neurodegenerations is largely unknown and there may be pathobiological differences between post-traumatic disease and the corresponding sporadic disorder. By contrast, the pathology of CTE is increasingly well known and is characterized by a distinctive pattern of progressive brain atrophy and accumulation of hyperphosphorylated tau neurofibrillary and glial tangles, dystrophic neurites, 43 kDa TAR DNA-binding protein (TDP-43) neuronal and glial aggregates, microvasculopathy, myelinated axonopathy, neuroinflammation, and white matter degeneration. Clinically, CTE is associated with behavioral changes, executive dysfunction, memory deficits, and cognitive impairments that begin insidiously and most often progress slowly over decades. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. Critical knowledge gaps include elucidation of pathogenic mechanisms, identification of genetic risk factors, and clarification of relevant variables-including age at exposure to trauma, history of prior and subsequent head trauma, substance use, gender, stress, and comorbidities-all of which may contribute to risk profiles and the development of post-traumatic neurodegeneration and CTE. This article is part of a Special Issue entitled Traumatic Brain Injury.


Current Pain and Headache Reports | 2015

Concussion in Chronic Traumatic Encephalopathy

Thor D. Stein; Victor E. Alvarez; Ann C. McKee

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease that occurs in association with repetitive mild traumatic brain injury. It is associated with a variety of clinical symptoms in multiple domains, and there is a distinct pattern of pathological changes. The abnormal tau pathology in CTE occurs uniquely in those regions of the brain that are likely most susceptible to stress concentration during trauma. CTE has been associated with a variety of types of repetitive head trauma, most frequently contact sports. In cases published to date, the mean length of exposure to repetitive head trauma was 15.4xa0years. The clinical symptoms of the disease began after a mean latency of 14.5xa0years with a mean age of death of 59.3xa0years. Most subjects had a reported history of concussions with a mean of 20.3. However, 16xa0% of published CTE subjects did not have a history of concussion suggesting that subconcussive hits are sufficient to lead to the development of CTE. Overall, the number of years of exposure, not the number of concussions, was significantly associated with worse tau pathology in CTE. This suggests that it is the chronic and repetitive nature of head trauma, irrespective of concussive symptoms, that is the most important driver of disease. CTE and exposure to repetitive head trauma is also associated with a variety of other neurodegenerations, including Alzheimer disease. In fact, amyloid β peptide deposition is altered and accelerated in CTE and is associated with worse disease. Here, we review the current exposure, clinical, and pathological associations of CTE.


Acta neuropathologica communications | 2016

Microglial neuroinflammation contributes to tau accumulation in chronic traumatic encephalopathy

Jonathan D. Cherry; Yorghos Tripodis; Victor E. Alvarez; Bertrand R. Huber; Patrick T. Kiernan; Daniel H. Daneshvar; Jesse Mez; Philip H. Montenigro; Todd M. Solomon; Michael L. Alosco; Robert A. Stern; Ann C. McKee; Thor D. Stein

The chronic effects of repetitive head impacts (RHI) on the development of neuroinflammation and its relationship to chronic traumatic encephalopathy (CTE) are unknown. Here we set out to determine the relationship between RHI exposure, neuroinflammation, and the development of hyperphosphorylated tau (ptau) pathology and dementia risk in CTE. We studied a cohort of 66 deceased American football athletes from the Boston University-Veteran’s Affairs-Concussion Legacy Foundation Brain Bank as well as 16 non-athlete controls. Subjects with a neurodegenerative disease other than CTE were excluded. Counts of total and activated microglia, astrocytes, and ptau pathology were performed in the dorsolateral frontal cortex (DLF). Binary logistic and simultaneous equation regression models were used to test associations between RHI exposure, microglia, ptau pathology, and dementia. Duration of RHI exposure and the development and severity of CTE were associated with reactive microglial morphology and increased numbers of CD68 immunoreactive microglia in the DLF. A simultaneous equation regression model demonstrated that RHI exposure had a significant direct effect on CD68 cell density (pu2009<u20090.0001) and ptau pathology (pu2009<u20090.0001) independent of age at death. The effect of RHI on ptau pathology was partially mediated through increased CD68 positive cell density. A binary logistic regression demonstrated that a diagnosis of dementia was significantly predicted by CD68 cell density (ORu2009=u20091.010, pu2009=u20090.011) independent of age (ORu2009=u20091.055, pu2009=u20090.007), but this effect disappeared when ptau pathology was included in the model. In conclusion, RHI is associated with chronic activation of microglia, which may partially mediate the effect of RHI on the development of ptau pathology and dementia in CTE. Inflammatory molecules may be important diagnostic or predictive biomarkers as well as promising therapeutic targets in CTE.


Annual Review of Clinical Psychology | 2015

Chronic Traumatic Encephalopathy: Historical Origins and Current Perspective

Philip H. Montenigro; Daniel T. Corp; Thor D. Stein; Robert C. Cantu; Robert A. Stern

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is most often identified in postmortem autopsies of individuals exposed to repetitive head impacts, such as boxers and football players. The neuropathology of CTE is characterized by the accumulation of hyperphosphorylated tau protein in a pattern that is unique from that of other neurodegenerative diseases, including Alzheimers disease. The clinical features of CTE are often progressive, leading to dramatic changes in mood, behavior, and cognition, frequently resulting in debilitating dementia. In some cases, motor features, including parkinsonism, can also be present. In this review, the historical origins of CTE are revealed and an overview of the current state of knowledge of CTE is provided, including the neuropathology, clinical features, proposed clinical and pathological diagnostic criteria, potential in vivo biomarkers, known risk factors, and treatment options.


Alzheimer's Research & Therapy | 2015

Assessing clinicopathological correlation in chronic traumatic encephalopathy: rationale and methods for the UNITE study.

Jesse Mez; Todd M. Solomon; Daniel H. Daneshvar; Lauren Murphy; Patrick T. Kiernan; Philip H. Montenigro; Joshua Kriegel; Bobak Abdolmohammadi; Brian Fry; Katharine J. Babcock; Jason W. Adams; Alexandra P. Bourlas; Zachary Papadopoulos; Lisa McHale; Brent M. Ardaugh; Brett Martin; Diane Dixon; Christopher J. Nowinski; Christine E. Chaisson; Victor E. Alvarez; Yorghos Tripodis; Thor D. Stein; Lee E. Goldstein; Douglas I. Katz; Neil W. Kowall; Robert C. Cantu; Robert A. Stern; Ann C. McKee

IntroductionChronic traumatic encephalopathy (CTE) is a progressive neurodegeneration associated with repetitive head impacts. Understanding Neurologic Injury and Traumatic Encephalopathy (UNITE) is a U01 project recently funded by the National Institute of Neurological Disorders and Stroke and the National Institute of Biomedical Imaging and Bioengineering. The goal of the UNITE project is to examine the neuropathology and clinical presentation of brain donors designated as “at risk” for the development of CTE based on prior athletic or military exposure. Here, we present the rationale and methodology for UNITE.MethodsOver the course of 4xa0years, we will analyze the brains and spinal cords of 300 deceased subjects who had a history of repetitive head impacts sustained during participation in contact sports at the professional or collegiate level or during military service. Clinical data are collected through medical record review and retrospective structured and unstructured family interviews conducted by a behavioral neurologist or neuropsychologist. Blinded to the clinical data, a neuropathologist conducts a comprehensive assessment for neurodegenerative disease, including CTE, using published criteria. At a clinicopathological conference, a panel of physicians and neuropsychologists, blinded to the neuropathological data, reaches a clinical consensus diagnosis using published criteria, including proposed clinical research criteria for CTE.ResultsWe will investigate the validity of these clinical criteria and sources of error by using recently validated neuropathological criteria as a gold standard for CTE diagnosis. We also will use statistical modeling to identify diagnostic features that best predict CTE pathology.ConclusionsThe UNITE study is a novel and methodologically rigorous means of assessing clinicopathological correlation in CTE. Our findings will be critical for developing future iterations of CTE clinical diagnostic criteria.

Collaboration


Dive into the Thor D. Stein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge