Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Neill White is active.

Publication


Featured researches published by Neill White.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Rapid identification and strain-typing of respiratory pathogens for epidemic surveillance

David J. Ecker; Rangarajan Sampath; Lawrence B. Blyn; Mark W. Eshoo; Cristina Ivy; Joseph A. Ecker; Brian Libby; Vivek Samant; Kristin A. Sannes-Lowery; Rachael Melton; Kevin L. Russell; Nikki E. Freed; Chris Barrozo; Jianguo Wu; Karl Rudnick; Anjali Desai; Emily Moradi; Duane Knize; David Robbins; James C. Hannis; Patina M. Harrell; Christian Massire; Thomas A. Hall; Yun Jiang; Raymond Ranken; Jared J. Drader; Neill White; John Mcneil; Stanley T. Crooke; Steven A. Hofstadler

Epidemic respiratory infections are responsible for extensive morbidity and mortality within both military and civilian populations. We describe a high-throughput method to simultaneously identify and genotype species of bacteria from complex mixtures in respiratory samples. The process uses electrospray ionization mass spectrometry and base composition analysis of PCR amplification products from highly conserved genomic regions to identify and determine the relative quantity of pathogenic bacteria present in the sample. High-resolution genotyping of specific species is achieved by using additional primers targeted to highly variable regions of specific bacterial genomes. This method was used to examine samples taken from military recruits during respiratory disease outbreaks and for follow up surveillance at several military training facilities. Analysis of respiratory samples revealed high concentrations of pathogenic respiratory species, including Haemophilus influenzae, Neisseria meningitidis, and Streptococcus pyogenes. When S. pyogenes was identified in samples from the epidemic site, the identical genotype was found in almost all recruits. This analysis method will provide information fundamental to understanding the polymicrobial nature of explosive epidemics of respiratory disease.


Journal of Laboratory Automation | 2006

The Ibis T5000 Universal Biosensor: An Automated Platform for Pathogen Identification and Strain Typing

David J. Ecker; Jared J. Drader; Jose R. Gutierrez; Abel Gutierrez; James C. Hannis; Amy Schink; Rangarajan Sampath; Lawrence B. Blyn; Mark W. Eshoo; Thomas A. Hall; Maria Tobarmosquera; Yun Jiang; Kristin A. Sannes-Lowery; Lendell L. Cummins; Brian Libby; Demetrius J. Walcott; Christian Massire; Raymond Ranken; Sheri Manalili; Cristina Ivy; Rachael Melton; Harold Levene; Vanessa Harpin; Feng Li; Neill White; Michael Pear; Joseph A. Ecker; Vivek Samant; Duane Knize; David Robbins

We describe a new approach to the sensitive and specific identification of bacteria, viruses, fungi, and protozoa based on broad-range PCR and high-performance mass spectrometry. The Ibis T5000 is based on technology developed for the Department of Defense known as T.I.G.E.R. (Triangulation Identification for the Genetic Evaluation of Risks) for pathogen surveillance. The technology uses mass spectrometry—derived base composition signatures obtained from PCR amplification of broadly conserved regions of the pathogen genomes to identify most organisms present in a sample. The process of sample analysis has been automated using a combination of commercially available and custom instrumentation. A software system known as T-Track manages the sample flow, signal analysis, and data interpretation and provides simplified result reports to the user. No specialized expertise is required to use the instrumentation. In addition to pathogen surveillance, the Ibis T5000 is being applied to reducing health care—associated infections (HAIs), emerging and pandemic disease surveillance, human forensics analysis, and pharmaceutical product and food safety, and will be used eventually in human infectious disease diagnosis. In this review, we describe the automated Ibis T5000 instrument and provide examples of how it is used in HAI control.


Journal of Clinical Microbiology | 2009

Rapid Molecular Genotyping and Clonal Complex Assignment of Staphylococcus aureus Isolates by PCR Coupled to Electrospray Ionization-Mass Spectrometry

Thomas A. Hall; Rangarajan Sampath; Lawrence B. Blyn; Raymond Ranken; Cristina Ivy; Rachael Melton; Heather Matthews; Neill White; Feng Li; Vanessa Harpin; David J. Ecker; Linda K. McDougal; Brandi Limbago; Tracy Ross; Donna M. Wolk; Vicki H. Wysocki; Karen C. Carroll

ABSTRACT We describe a high-throughput assay using PCR coupled to electrospray ionization-mass spectrometry (PCR/ESI-MS) to determine the genotypes of Staphylococcus aureus isolates. The primer sets used in the PCR/ESI-MS assay were designed to amplify the same genes analyzed in multilocus sequence typing (MLST). The method was used to identify the clonal complex and USA type of each isolate and is suitable for use in a clinical or public-health setting. The method was validated using a panel of diverse isolates from the Centers for Disease Control and Prevention that were previously characterized by MLST and pulsed-field gel electrophoresis (PFGE). Clinical isolates from two geographically distinct hospitals were characterized, and the clustering results were in agreement with those for repetitive-element PCR and PFGE. The PCR/ESI-MS method enables genotyping of over 180 samples of S. aureus per day in an automated fashion.


Journal of Clinical Microbiology | 2009

Pathogen Profiling: Rapid Molecular Characterization of Staphylococcus aureus by PCR/Electrospray Ionization-Mass Spectrometry and Correlation with Phenotype

Donna M. Wolk; Lawrence B. Blyn; Thomas A. Hall; Rangarajan Sampath; Raymond Ranken; Cristina Ivy; Rachael Melton; Heather Matthews; Neill White; Feng Li; Vanessa Harpin; David J. Ecker; Brandi Limbago; Linda K. McDougal; Vicki H. Wysocki; Mian Cai; Karen C. Carroll

ABSTRACT There are few diagnostic methods that readily distinguish among community-acquired methicillin (meticillin)-resistant Staphylococcus aureus strains, now frequently transmitted within hospitals. We describe a rapid and high-throughput method for bacterial profiling of staphylococcal isolates. The method couples PCR to electrospray ionization-mass spectrometry (ESI-MS) and is performed on a platform suitable for use in a diagnostic laboratory. This profiling technology produces a high-resolution genetic signature indicative of the presence of specific genetic elements that represent distinctive phenotypic features. The PCR/ESI-MS signature accurately identified genotypic determinants consistent with phenotypic traits in well-characterized reference and clinical isolates of S. aureus. Molecular identification of the antibiotic resistance genes correlated strongly with phenotypic in vitro resistance. The identification of toxin genes correlated with independent PCR analyses for the toxin genes. Finally, isolates were correctly classified into genotypic groups that correlated with genetic clonal complexes, repetitive-element-based PCR patterns, or pulsed-field gel electrophoresis types. The high-throughput PCR/ESI-MS assay should improve clinical management of staphylococcal infections.


Journal of Clinical Microbiology | 2008

High-Resolution Genotyping of Campylobacter Species by Use of PCR and High-Throughput Mass Spectrometry

James C. Hannis; Sheri Manalili; Thomas A. Hall; Raymond Ranken; Neill White; Rangarajan Sampath; Lawrence B. Blyn; David J. Ecker; Robert E. Mandrell; Clifton K. Fagerquist; Anna H. Bates; William G. Miller; Steven A. Hofstadler

ABSTRACT In this work we report on a high-throughput mass spectrometry-based technique for the rapid high-resolution identification of Campylobacter jejuni strain types. This method readily distinguishes C. jejuni from C. coli, has a resolving power comparable to that of multilocus sequence typing (MLST), is applicable to mixtures, and is highly automated. The strain typing approach is based on high-performance mass spectrometry, which “weighs” PCR amplicons with enough mass accuracy to unambiguously determine the base composition of each amplicon (i.e., the numbers of As, Gs, Cs, and Ts). Amplicons are derived from PCR primers which amplify short (<140-bp) regions of the housekeeping genes used by conventional MLST strategies. The results obtained with a challenge panel that comprised 25 strain types of C. jejuni and 25 strain types of C. coli are presented. These samples were parsed and resolved with demonstrated sensitivity down to 10 genomes/PCR from pure isolates.


Journal of Clinical Microbiology | 2012

Concurrent Serotyping and Genotyping of Pneumococci by Use of PCR and Electrospray Ionization Mass Spectrometry

Christian Massire; Robert E. Gertz; Pavel Svoboda; Keith Levert; Matthew S. Reed; Jan Pohl; Rachel Kreft; Feng Li; Neill White; Ray Ranken; Larry B. Blyn; David J. Ecker; Rangarajan Sampath; Bernard Beall

ABSTRACT A pneumococcal serotyping/genotyping system (PSGS) was developed based upon targeted PCR, followed by electrospray ionization mass spectrometry and amplicon base composition analysis. Eight multiplex PCRs, 32 targeting serotype-determining capsular biosynthetic loci, and 8 targeting multilocus sequence typing (MLST) loci were employed for each of 229 highly diverse Streptococcus pneumoniae isolates. The most powerful aspect of the PSGS system was the identification of capsular serotypes accounting for the majority of invasive and carried pneumococcal strains. Altogether, 45 different serotypes or serogroups were correctly predicted among the 196 resolvable isolates, with only 2 unexpected negative results. All 33 isolates that represented 23 serotypes not included in the PSGS yielded negative serotyping results. A genotyping database was constructed using the base compositions of 65- to 100-bp sections of MLST alleles compiled within http://www.mlst.net. From this database, one or more MLST sequence types (STs) that comprised a PSGS genotype were identified. The end result of more PSGS genotypes (163) than conventional STs actually tested (155) was primarily due to amplification failures of 1 to 3 targets. In many instances, the PSGS genotype could provide resolution of single- and double-locus variants. This molecular serotyping/genotyping scheme is well suited to rapid characterization of large sets of pneumococcal isolates.


Nucleic Acids Research | 2004

Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs

Yingqing Sun; Seongjoon Koo; Neill White; Eigen Peralta; Christine Esau; Nicholas M. Dean; Ranjan J. Perera


International Journal of Mass Spectrometry | 2005

TIGER: the universal biosensor

Steven A. Hofstadler; Rangarajan Sampath; Lawrence B. Blyn; Mark W. Eshoo; Thomas A. Hall; Yun Jiang; Jared J. Drader; James C. Hannis; Kristin A. Sannes-Lowery; Lendell L. Cummins; Brian Libby; Demetrius J. Walcott; Amy Schink; Christian Massire; Raymond Ranken; Jose R. Gutierrez; Sheri Manalili; Cristina Ivy; Rachael Melton; Harold Levene; Greg Barrett-Wilt; Feng Li; Vanessa Zapp; Neill White; Vivek Samant; John McNeil; Duane Knize; David Robbins; Karl Rudnick; Anjali Desai


Analytical Biochemistry | 2005

Base composition analysis of human mitochondrial DNA using electrospray ionization mass spectrometry: a novel tool for the identification and differentiation of humans.

Thomas A. Hall; Bruce Budowle; Yun Jiang; Lawrence B. Blyn; Mark W. Eshoo; Kristin A. Sannes-Lowery; Rangarajan Sampath; Jared J. Drader; James C. Hannis; Patina M. Harrell; Vivek Samant; Neill White; David J. Ecker; Steven A. Hofstadler


Gene | 2006

Identification of novel PPARγ target genes in primary human adipocytes

Ranjan J. Perera; Eric G. Marcusson; Seongjoon Koo; Xiaolin Kang; Youngsoo Kim; Neill White; Nicholas M. Dean

Collaboration


Dive into the Neill White's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Hannis

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jared J. Drader

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge