Nellie Byun
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nellie Byun.
Nature Genetics | 2002
Heidi Carmen Howard; David B. Mount; Daniel Rochefort; Nellie Byun; Nicolas Dupré; Jianming Lu; Xuemo Fan; Luyan Song; Jean Baptiste Rivière; Claude Prévost; Jürgen Horst; Alessandro Simonati; Beate Lemcke; Rick Welch; Roger England; Frank Zhan; Adriana Mercado; W. B. Siesser; Alfred L. George; Michael P. McDonald; Jean-Pierre Bouchard; Jean Mathieu; Eric Delpire; Guy A. Rouleau
Peripheral neuropathy associated with agenesis of the corpus callosum (ACCPN) is a severe sensorimotor neuropathy associated with mental retardation, dysmorphic features and complete or partial agenesis of the corpus callosum. ACCPN is transmitted in an autosomal recessive fashion and is found at a high frequency in the province of Quebec, Canada. ACCPN has been previously mapped to chromosome 15q. The gene SLC12A6 (solute carrier family 12, member 6), which encodes the K+–Cl− transporter KCC3 and maps within the ACCPN candidate region, was screened for mutations in individuals with ACCPN. Four distinct protein-truncating mutations were found: two in the French Canadian population and two in non–French Canadian families. The functional consequence of the predominant French Canadian mutation (2436delG, Thr813fsX813) was examined by heterologous expression of wildtype and mutant KCC3 in Xenopus laevis oocytes; the truncated mutant is appropriately glycosylated and expressed at the cellular membrane, where it is non-functional. Mice generated with a targeted deletion of Slc12a6 have a locomotor deficit, peripheral neuropathy and a sensorimotor gating deficit, similar to the human disease. Our findings identify mutations in SLC12A6 as the genetic lesion underlying ACCPN and suggest a critical role for SLC12A6 in the development and maintenance of the nervous system.
Neuropsychopharmacology | 2012
Carrie K. Jones; Nellie Byun; Michael Bubser
Muscarinic and nicotinic acetylcholine (ACh) receptors (mAChRs and nAChRs) are emerging as important targets for the development of novel treatments for the symptoms associated with schizophrenia. Preclinical and early proof-of-concept clinical studies have provided strong evidence that activators of specific mAChR (M1 and M4) and nAChR (α7 and α2β4) subtypes are effective in animal models of antipsychotic-like activity and/or cognitive enhancement, and in the treatment of positive and cognitive symptoms in patients with schizophrenia. While early attempts to develop selective mAChR and nAChR agonists provided important preliminary findings, these compounds have ultimately failed in clinical development due to a lack of true subtype selectivity and subsequent dose-limiting adverse effects. In recent years, there have been major advances in the discovery of highly selective activators for the different mAChR and nAChR subtypes with suitable properties for optimization as potential candidates for clinical trials. One novel strategy has been to identify ligands that activate a specific receptor subtype through actions at sites that are distinct from the highly conserved ACh-binding site, termed allosteric sites. These allosteric activators, both allosteric agonists and positive allosteric modulators, of mAChR and nAChR subtypes demonstrate unique mechanisms of action and high selectivity in vivo, and may provide innovative treatment strategies for schizophrenia.
Molecular Pharmacology | 2009
Douglas J. Sheffler; Richard Williams; Thomas M. Bridges; Zixiu Xiang; Alexander S. Kane; Nellie Byun; Satyawan Jadhav; Mathew M. Mock; Fang Zheng; L. Michelle Lewis; Carrie K. Jones; Colleen M. Niswender; Charles David Weaver; Craig W. Lindsley; P. Jeffrey Conn
Previous studies suggest that selective antagonists of specific subtypes of muscarinic acetylcholine receptors (mAChRs) may provide a novel approach for the treatment of certain central nervous system (CNS) disorders, including epileptic disorders, Parkinsons disease, and dystonia. Unfortunately, previously reported antagonists are not highly selective for specific mAChR subtypes, making it difficult to definitively establish the functional roles and therapeutic potential for individual subtypes of this receptor subfamily. The M1 mAChR is of particular interest as a potential target for treatment of CNS disorders. We now report the discovery of a novel selective antagonist of M1 mAChRs, termed VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide]. Equilibrium radioligand binding and functional studies demonstrate a greater than 75-fold selectivity of VU0255035 for M1 mAChRs relative to M2-M5. Molecular pharmacology and mutagenesis studies indicate that VU0255035 is a competitive orthosteric antagonist of M1 mAChRs, a surprising finding given the high level of M1 mAChR selectivity relative to other orthosteric antagonists. Whole-cell patch-clamp recordings demonstrate that VU0255035 inhibits potentiation of N-methyl-d-aspartate receptor currents by the muscarinic agonist carbachol in hippocampal pyramidal cells. VU0255035 has excellent brain penetration in vivo and is efficacious in reducing pilocarpine-induced seizures in mice. We were surprised to find that doses of VU0255035 that reduce pilocarpine-induced seizures do not induce deficits in contextual freezing, a measure of hippocampus-dependent learning that is disrupted by nonselective mAChR antagonists. Taken together, these data suggest that selective antagonists of M1 mAChRs do not induce the severe cognitive deficits seen with nonselective mAChR antagonists and could provide a novel approach for the treatment certain of CNS disorders.
Neuroscience | 2004
M.F Karadsheh; Nellie Byun; David B. Mount; Eric Delpire
Potassium-chloride cotransporters (KCCs) collectively play a crucial role in the function and development of both the peripheral and central nervous systems. KCC4 is perhaps the least abundant KCC in the adult mammalian brain, where its localization is unknown. In the embryonic brain, KCC4 mRNA is found in the periventricular zone, cranial nerves and choroid plexus [Eur J Neurosci 16 (2002) 2358]. To investigate the distribution of KCC4 protein in the nervous system we developed a rabbit polyclonal antibody directed against a short N-terminal peptide. Western blot analysis of brain microsomal protein using purified antibody revealed the presence of a band at approximately 145 kDa, consistent with the size of a glycosylated K-Cl cotransporter. Western blot analysis of brain, spinal cord and peripheral nerves revealed high expression levels in peripheral nerves and spinal cord, with low levels in whole brain. Within the brain, the cerebral cortex, hippocampus, and cerebellum revealed minimal KCC4 expression, whereas midbrain and brainstem demonstrated higher levels. In the adult mouse brain, KCC4 staining was observed on the apical membrane of choroid plexus epithelial cells as well as in cranial nerves. All other brain structures, e.g. cortex, hippocampus, cerebellum showed no KCC4 immunoreactivity, suggesting very low or absent expression of the cotransporter in these regions. Co-staining of KCC4 with anti-MAP2, GFAP and CNPase revealed that KCC4 is expressed in peripheral neurons. Thus, KCC4 is expressed on the apical membrane of the choroid plexus, where it likely participates to K(+) reabsorption. KCC4 is also expressed in peripheral neurons, where its function remains to be determined.
Neurobiology of Disease | 2007
Nellie Byun; Eric Delpire
We have previously reported CNS and locomotor deficits in KCC3 knockout mice, an animal model of agenesis of the corpus callosum associated with peripheral neuropathy (ACCPN) [Howard, H.C., Mount, D.B., Rochefort, D., Byun, N., Dupre, N., Lu, J., Fan, X., Song, L., Riviere, J.B., Prevost, C., Horst, J., Simonati, A., Lemcke, B., Welch, R., England, R., Zhan, F.Q., Mercado, A., Siesser, W.B., George, A.L., Jr., McDonald, M.P., Bouchard, J.P., Mathieu, J., Delpire, E., Rouleau, G.A., 2002. The K-Cl cotransporter KCC3 is mutant in a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat. Genet. 32, 384-392]. To assess the role of KCC3 in peripheral axon and/or myelin development and maintenance, we determined its expression and performed a detailed morphometric analysis of sciatic nerves. Sciatic nerves of juvenile wild-type mice, but not of adult, express KCC3. In the knockout, Schwann cell/myelin development appears normal at P3, but axons are swollen. At P8 and into P30, some fibers accumulate fluid periaxonally. These initial swelling pathologies are followed by axon and myelin degeneration in adult nerves, leading to reduction in nerve conduction velocity. Mutant mice also exhibit decreased sensitivity to noxious pain. This evidence for fluid-related axonopathy, which ultimately result in neurodegeneration, implicates cell volume regulation as a critical component of peripheral nerve maintenance.
The Journal of Neuroscience | 2012
Gregory J. Digby; Meredith J. Noetzel; Michael Bubser; Thomas J. Utley; Adam G. Walker; Nellie Byun; Evan P. Lebois; Zixiu Xiang; Douglas J. Sheffler; Hyekyung P. Cho; Albert A. Davis; N.E. Nemirovsky; Sarah E. Mennenga; Bryan W. Camp; Heather A. Bimonte-Nelson; Jacob Bode; K. Italiano; Ryan D. Morrison; Daniels Js; Colleen M. Niswender; M.F. Olive; Craig W. Lindsley; Carrie K. Jones; P.J. Conn
M1 muscarinic acetylcholine receptors (mAChRs) represent a viable target for treatment of multiple disorders of the central nervous system (CNS) including Alzheimers disease and schizophrenia. The recent discovery of highly selective allosteric agonists of M1 receptors has provided a major breakthrough in developing a viable approach for the discovery of novel therapeutic agents that target these receptors. Here we describe the characterization of two novel M1 allosteric agonists, VU0357017 and VU0364572, that display profound differences in their efficacy in activating M1 coupling to different signaling pathways including Ca2+ and β-arrestin responses. Interestingly, the ability of these agents to differentially activate coupling of M1 to specific signaling pathways leads to selective actions on some but not all M1-mediated responses in brain circuits. These novel M1 allosteric agonists induced robust electrophysiological effects in rat hippocampal slices, but showed lower efficacy in striatum and no measureable effects on M1-mediated responses in medial prefrontal cortical pyramidal cells in mice. Consistent with these actions, both M1 agonists enhanced acquisition of hippocampal-dependent cognitive function but did not reverse amphetamine-induced hyperlocomotion in rats. Together, these data reveal that M1 allosteric agonists can differentially regulate coupling of M1 to different signaling pathways, and this can dramatically alter the actions of these compounds on specific brain circuits important for learning and memory and psychosis.
Neuroscience | 2010
E.A. Hackler; Nellie Byun; Carrie K. Jones; J.M. Williams; R. Baheza; S. Sengupta; M.D. Grier; Malcolm J. Avison; P.J. Conn; John C. Gore
Previous preclinical and clinical studies have demonstrated the efficacy of group II metabotropic glutamate receptor (mGluR) agonists as potential antipsychotics. Recent studies utilizing mGluR2-, mGluR3-, and double knockout mice support that the antipsychotic effects of those compounds are mediated by mGluR2. Indeed, biphenyl indanone-A (BINA), an allosteric potentiator of mGluR2, is effective in experimental models of psychosis, blocking phencyclidine (PCP)-induced hyperlocomotion and prepulse inhibition deficits in mice. In this study, we administered the NMDA receptor antagonist PCP (5.6 mg/kg i.p.) to rats, an established animal model predictive of schizophrenia. Here, we show that BINA (32 mg/kg i.p.) attenuated PCP-induced locomotor activity in rats. Using behaviorally relevant doses of BINA and PCP, we performed pharmacological magnetic resonance imaging (phMRI) to assess the specific brain regions that underlie the psychotomimetic effects of PCP, and examined how BINA modulated the PCP-induced functional changes in vivo. In anesthetized rats, acute administration of PCP produced robust, sustained blood oxygenation level-dependent (BOLD) activation in specific cortical, limbic, thalamic, and striatal regions. Pretreatment with BINA suppressed the amplitude of the BOLD response to PCP in the prefrontal cortex, caudaute-putamen, nucleus accumbens, and mediodorsal thalamus. Our results show key brain structures underlying PCP-induced behaviors in a preclinical model of schizophrenia, and, importantly, its reversal by potentiation of mGluR2 by BINA, revealing specific brain regions functionally involved in its pharmacological action. Finally, our findings bolster the growing body of evidence that mGluR2 is a viable target for the treatment of schizophrenia.
Neuropsychopharmacology | 2014
Nellie Byun; Michael Grannan; Michael Bubser; Robert L. Barry; Analisa D. Thompson; John Rosanelli; Raajaram Gowrishankar; Nathaniel D Kelm; Stephen M. Damon; Thomas M. Bridges; Bruce J. Melancon; James C. Tarr; John T. Brogan; Malcolm J. Avison; Ariel Y. Deutch; Jürgen Wess; Michael R. Wood; Craig W. Lindsley; John C. Gore; P. Jeffrey Conn; Carrie K. Jones
Accumulating evidence suggests that selective M4 muscarinic acetylcholine receptor (mAChR) activators may offer a novel strategy for the treatment of psychosis. However, previous efforts to develop selective M4 activators were unsuccessful because of the lack of M4 mAChR subtype specificity and off-target muscarinic adverse effects. We recently developed VU0152100, a highly selective M4 positive allosteric modulator (PAM) that exerts central effects after systemic administration. We now report that VU0152100 dose-dependently reverses amphetamine-induced hyperlocomotion in rats and wild-type mice, but not in M4 KO mice. VU0152100 also blocks amphetamine-induced disruption of the acquisition of contextual fear conditioning and prepulse inhibition of the acoustic startle reflex. These effects were observed at doses that do not produce catalepsy or peripheral adverse effects associated with non-selective mAChR agonists. To further understand the effects of selective potentiation of M4 on region-specific brain activation, VU0152100 alone and in combination with amphetamine were evaluated using pharmacologic magnetic resonance imaging (phMRI). Key neural substrates of M4-mediated modulation of the amphetamine response included the nucleus accumbens (NAS), caudate-putamen (CP), hippocampus, and medial thalamus. Functional connectivity analysis of phMRI data, specifically assessing correlations in activation between regions, revealed several brain networks involved in the M4 modulation of amphetamine-induced brain activation, including the NAS and retrosplenial cortex with motor cortex, hippocampus, and medial thalamus. Using in vivo microdialysis, we found that VU0152100 reversed amphetamine-induced increases in extracellular dopamine levels in NAS and CP. The present data are consistent with an antipsychotic drug-like profile of activity for VU0152100. Taken together, these data support the development of selective M4 PAMs as a new approach to the treatment of psychosis and cognitive impairments associated with psychiatric disorders such as schizophrenia.
Handbook of experimental pharmacology | 2012
Michael Bubser; Nellie Byun; Michael R. Wood; Carrie K. Jones
The muscarinic cholinergic system constitutes an important part of the neuronal circuitry that modulates normal cognition. Muscarinic receptor antagonists are well known to produce or exacerbate impairments in attention, learning, and memory. Conversely, both direct-acting muscarinic receptor agonists and indirect-acting muscarinic cholinergic agonists, such as acetylcholinesterase inhibitors, have shown cognition-enhancing properties, including improvements in normal cognitive function, reversal of cognitive deficits induced by muscarinic receptor antagonists, and attenuation of cognitive deficits in psychiatric and neurological disorders, such as Alzheimers disease and schizophrenia. However, until recently, the lack of small molecule ligands that antagonize or activate specific muscarinic acetylcholine receptor (mAChR) subtypes with high selectivity has been a major obstacle in defining the relative contributions of individual mAChRs to different aspects of cognitive function and for the development of novel therapeutic agents. These limitations may be potentially overcome by the recent discovery of novel mAChR subtype-selective compounds, notably allosteric agonists and positive allosteric modulators, which exhibit greater selectivity for individual mAChR subtypes than previous mAChR orthosteric agonists. In preclinical studies, these novel ligands have shown promising efficacy in several models for the enhancement of cognition. In this chapter, we will review the muscarinic cholinergic circuitry and pharmacology of mAChR agonists and antagonists relevant to the modulation of different aspects of cognition in animals and clinical populations.
Journal of Pharmacology and Experimental Therapeutics | 2013
Karen J. Gregory; E.J. Herman; Amy J. Ramsey; A.S. Hammond; Nellie Byun; Shaun R. Stauffer; Jason Manka; Satyawan Jadhav; Thomas M. Bridges; Charles David Weaver; Colleen M. Niswender; Thomas Steckler; Wilhelmus Drinkenburg; Abdellah Ahnaou; H. Lavreysen; Gregor James Macdonald; José M. Bartolomé; C. Mackie; B.J. Hrupka; Marc G. Caron; Tanya L. Daigle; Craig W. Lindsley; P.J. Conn; Carrie K. Jones
Impaired transmission through glutamatergic circuits has been postulated to play a role in the underlying pathophysiology of schizophrenia. Furthermore, inhibition of the N-methyl-d-aspartate (NMDA) subtype of ionotropic glutamate receptors (NMDAR) induces a syndrome that recapitulates many of the symptoms observed in patients with schizophrenia. Selective activation of metabotropic glutamate receptor subtype 5 (mGlu5) may provide a novel therapeutic approach for treatment of symptoms associated with schizophrenia through facilitation of transmission through central glutamatergic circuits. Here, we describe the characterization of two novel N-aryl piperazine mGlu5 positive allosteric modulators (PAMs): 2-(4-(2-(benzyloxy)acetyl)piperazin-1-yl)benzonitrile (VU0364289) and 1-(4-(2,4-difluorophenyl)piperazin-1-yl)-2-((4-fluorobenzyl)oxy)ethanone (DPFE). VU0364289 and DPFE induced robust leftward shifts in the glutamate concentration-response curves for Ca2+ mobilization and extracellular signal-regulated kinases 1 and 2 phosphorylation. Both PAMs displayed micromolar affinity for the common mGlu5 allosteric binding site and high selectivity for mGlu5. VU0364289 and DPFE possessed suitable pharmacokinetic properties for dosing in vivo and produced robust dose-related effects in reversing amphetamine-induced hyperlocomotion, a preclinical model predictive of antipsychotic-like activity. In addition, DPFE enhanced acquisition of contextual fear conditioning in rats and reversed behavioral deficits in a mouse model of NMDAR hypofunction. In contrast, DPFE had no effect on reversing apomorphine-induced disruptions of prepulse inhibition of the acoustic startle reflex. These mGlu5 PAMs also increased monoamine levels in the prefrontal cortex, enhanced performance in a hippocampal-mediated memory task, and elicited changes in electroencephalogram dynamics commensurate with procognitive effects. Collectively, these data support and extend the role for the development of novel mGlu5 PAMs for the treatment of psychosis and cognitive deficits observed in individuals with schizophrenia.