Nelly Kervarec
European University of Brittany
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nelly Kervarec.
Talanta | 2010
Stéphanie Salaün; Nelly Kervarec; Philippe Potin; Dominique Haras; Martial Piotto; Stéphane La Barre
Recent developments in whole-cell spectroscopic methods allow rapid characterization of microorganisms of interest to human health, but have yet to be widely applied to marine microbiological studies. In this study of bacteria associated with the kelp Laminaria digitata, we have isolated 18 epiphytic bacterial strains from several thalli, sequenced their 16S rDNA, built corresponding phylogenetic trees, and characterized them using spectroscopic methods. Molecular taxonomy revealed Gram(+)Actinobacteria and Gram(-)Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. Twelve marine reference strains (Gram(+)Firmicutes, and Gram(-)Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes) were treated accordingly. Whole-cell MALDI-TOF MS spectral profiles of 29 of the 30 strains were built into a database against which 16 replicate spectra of each strain were compared and categorized into groups. The proton HR-MAS NMR stack plots allowed visual delineation into taxonomic groups according to their most common peaks, in agreement with identifiable compounds from corresponding D(2)O solution spectra. With both methods, these groups corresponded to taxa identified by 16S rDNA sequences, MALDI-TOF MS being more discriminative than HR-MAS NMR. Culture age did not influence the spectral signatures in both approaches. Most cells grown under minimal conditions (VNSS medium) afforded HR-MAS NMR profiles markedly different to those grown in enriched conditions (ZoBell medium), indicating different adaptive metabolic responses between the two media. Spectral signatures obtained under strictly controlled conditions can be used as rapid and reliable tools for taxonomic purposes and as markers of physiological status.
Talanta | 2010
Camille Jégou; Gérald Culioli; Nelly Kervarec; Gaëlle Simon; Valérie Stiger-Pouvreau
Species of the genus Cystoseira are particularly hard to discriminate, due to the complexity of their morphology, which can be influenced by their phenological state and ecological parameters. Our study emphasized on the relevance of two kinds of analytical tools, (1) LC/ESI-MS(n) and (2) (1)H HR-MAS NMR, also called in vivo NMR, to identify Cystoseira specimens at the specific level and discuss their taxonomy. For these analyses, samples were collected at several locations in Brittany (France), where Cystoseira baccata, C. foeniculacea, C. humilis, C. nodicaulis and C. tamariscifolia were previously reported. To validate our chemical procedure, the sequence of the ITS2 has been obtained for each species to investigate their phylogenetic relationships at a molecular level. Our study highlighted the consistency of the two physico-chemical methods, compared to classical molecular approach, in studying taxonomy within the genus Cystoseira. Especially, LC/ESI-MS(n) and phylogenetic analyses converged into the discrimination of two taxonomical groups among the 5 species. The occurrence of some specific signals in the (1)H HR-MAS NMR spectra and/or some characteristic chemical compounds during LC/ESI-MS(n) analysis could be regarded as discriminating factors. LC/ESI-MS(n) and (1)H HR-MAS NMR turned out to be two relevant and innovative techniques to discriminate taxonomically this complex genus.
Journal of Photochemistry and Photobiology B-biology | 2015
Gwladys Surget; Valérie Stiger-Pouvreau; Klervi Le Lann; Nelly Kervarec; Céline Couteau; Laurence Coiffard; Fanny Gaillard; Karine Cahier; Fabienne Guérard; Nathalie Poupart
In temperate saltmarshes, halophytic plants have to daily protect their internal tissues against sunlight and UV rays. Consequently, they develop adaptive responses such as the synthesis of secondary metabolites, including polyphenols. The present study focused on the biological activities of fractions enriched in polyphenols from Salicornia ramosissima. Three different extracts were obtained by purification processes to concentrate polyphenols: a crude hydroalcoholic extract, and two purified fractions: an ethyl acetate fraction (EAF) and an aqueous fraction. Phenolic and flavonoid contents, antioxidant (DPPH radical-scavenging activity, reducing activity, β-carotene linoleic acid system and the ORAC method) and sunscreen properties (Sun Protection Factor and UVA-Protection Factor) were assessed by in vitro tests. The purification process was effective in increasing phenolic and flavonoid contents as well as antioxidant and sunscreen capacities of the EAF. The EAF appeared to be a broad spectrum UV absorber. The chemical structure of 10 EAF polyphenols was elucidated using 2D NMR and mass spectrometry spectra. Furthermore, a correlation was observed between phenolic composition and biological activity. These findings are encouraging for the future use of S. ramosissima as a potential source of antioxidant and photoprotectant molecules for industrial applications.
Talanta | 2015
Anaëlle Tanniou; Laurent Vandanjon; Olivier Gonçalves; Nelly Kervarec; Valérie Stiger-Pouvreau
Two recent techniques based on chemical footprinting analysis, HRMAS NMR and FTIR spectroscopy, were tested on a brown macroalgal model. These powerful and easily-to-use techniques allowed us to discriminate Sargassum muticum specimens collected in five different countries along Atlantic coasts, from Portugal to Norway. HRMAS NMR and FTIR permitted the obtaining of an overview of metabolites produced by the alga. Based on spectra analysis, results allowed us to successfully group the samples according to their geographical origin. HRMAS NMR and FTIR spectroscopy respectively point out the relation between the geographical localization and the chemical composition and demonstrated macromolecules variations regarding to environmental stress. Then, our results are discussed in regard of the powerful of these techniques together with the variability of the main molecules produced by Sargassum muticum along the Atlantic coasts.
Talanta | 2008
K. Le Lann; Nelly Kervarec; Claude Payri; Eric Deslandes; Valérie Stiger-Pouvreau
A novel chemotaxonomical method based on 1D (1)H HRMAS NMR spectroscopy is being tested for taxonomical purposes. This powerful technique allowed us to discriminate between specimens belonging to two sister species of Turbinaria, which are difficult to tell apart using only morphological characters. Based on spectra analysis, the results allowed us to successfully group the specimens according to their species. Thus, the efficiency of HRMAS NMR spectroscopy for the discrimination of algal species and for the pre-screening of potential chemomarkers is demonstrated.
Phytochemistry Reviews | 2004
S. L. La. Barre; Florian Weinberger; Nelly Kervarec; Philippe Potin
As part of an ongoing research program aiming at monitoring molecular changes in the tissues and metabolite trafficking in the hydrosphere of algae subjected to chemical stresses, we are discussing the various analytical techniques that have been employed to characterize, and sometimes to quantity these metabolites. High-field multinuclear and solid-state nuclear magnetic resonance (NMR) spectroscopies are powerful tools for metabolite characterization from extracts and in vivo, but quantification and kinetic aspects show some limitations. Modern MS (mass spectrometry) is extremely useful for fingerprinting samples against databases and when dealing with very low concentrations of metabolites, the limitations being set by the type of chromatographic separation and mode of detection coupled with the mass spectrometer. Regarding chemical communication, optimization in terms of resolution and efficiency of hydrosphere chemical analysis can theoretically be achieved in a system which integrates (i) a multiparametric incubation chamber, (ii) a gasphase or a liquid-phase separation system and (iii) mass spectrometer(s) equipped with one or two detectors responding to the analytical and quantitative needs. This text reviews some of the techniques that have been employed in various types of plant metabolic studies, which may serve as a basis towards an integrative analytical strategy directly applicable to the metabolomics of selected marine macrophytes.
Talanta | 2012
H. Hanana; Gaëlle Simon; Nelly Kervarec; B.A. Mohammadou; Stéphane Cérantola
The essence of this study was to investigate the metabolic responses of heart tissues of carpet-shell clam Ruditapes decussatus after exposure to two doses (0.2 and 1 g/L) of Roundup(®) during 24 and 72 h. The main metabolic changes after Roundup(®) exposure were related to disturbance in energy metabolism and metabolic biomarkers such as alanine, succinate, acetate and propionate, suggesting the occcurence of anaerobiosis and the impairment of oxydative metabolism. Results showed also that peak intensities of amino acids used as biomarker of anaerobiosis in molluscs are time and dose dependent. In the opposite, phosphoarginine and ATP level are dependent to Roundup(®) concentration rather than to the time of exposure. We suggest that changes in energy demands require adjustements in the forward arginine kinase reaction rate. Therefore, the results demonstrate the high applicability of HRMAS NMR to elucidate the mechanism of toxicity of Roundup(®). In addition, (31)P HRMAS NMR appeared to be an effective and simple method to follow bioaccumulation of Roundup(®) formulation.
Talanta | 2015
Camille Jégou; Nelly Kervarec; Stéphane Cérantola; Isabelle Bihannic; Valérie Stiger-Pouvreau
Among the most renowned natural products from brown algae, phlorotannins are phloroglucinol polymers that have been extensively studied, both for their biotechnological potential and their interest in chemical ecology. The accurate quantification of these compounds is a key point to understand their role as mediators of chemical defense. In recent years, the Folin-Ciocalteu assay has remained a classic protocol for phlorotannin quantification, even though it frequently leads to over-estimations. Furthermore, the quantification of the whole pool of phlorotannins may not be relevant in ecological surveys. In this study, we propose a rapid (1)H qNMR method for the quantification of phlorotannins. We identified phloroglucinol as the main phenolic compound produced by the brown macroalga Cystoseira tamariscifolia. This monomer was detected in vivo using (1)H HR-MAS spectroscopy. We quantified this molecule through (1)H qNMR experiments using TSP as internal standard. The results are discussed by comparison with a standard Folin-Ciocalteu assay performed on purified extracts. The accuracy and simplicity of qNMR makes this method a good candidate as a standard phlorotannin assay.
Journal of Phycology | 2014
Klervi Le Lann; Edouard Kraffe; Nelly Kervarec; Stéphane Cérantola; Claude Payri; Valérie Stiger-Pouvreau
Several species of the genus Turbinaria coexist along the coasts of islands in the Indian and Pacific Oceans. Among these brown algae, Turbinaria ornata and T. conoides are sister species that are difficult to differentiate using exclusively morphological characters. Based on in vivo nuclear magnetic resonance and chromatographic techniques, i.e., liquid and gas chromatography‐mass spectrometry analysis, combined with phylogenetic data, we successfully identified turbinaric acid in T. conoides samples from several Indian and Pacific Ocean islands. This nonvariable discriminant molecule was only identified in T. conoides specimens, but not in the two allied species T. ornata and T. decurrens. Results are discussed with regard to turbinaric acid as an interesting chemomarker isolated from T. conoides and the rapid discrimination of Turbinaria specimens using chemical assays.
Talanta | 2016
Claudia Zea Obando; Isabelle Linossier; Nelly Kervarec; Mayalen Zubia; Jean Turquet; Fabienne Faÿ; Karine Réhel
In this study, we report the chemical characterization of 47 tropical microalgae and cyanobacteria by HR-MAS. The generated data confirm the interest of HR-MAS as a rapid screening technique with the major advantage of its easiness. The sample is used as powder of freeze-dried microalgae without any extraction process before acquisition. The spectral fingerprints of strains are then tested as variables for a chemotaxonomy study to discriminate cyanobacteria and dinoflagellates. The individual factor map generated by PCA analysis succeeds in separating the two groups, essentially thanks to the presence of specific carbohydrates. Furthermore, more resolved signals enable to identify many osmolytes. More precisely the characteristics δ of 2-O-alpha-D-glucosylglycerol (GG) are observed in all 21 h-MAS spectra of tropical cyanobacteria. After specific extraction, complementary analysis by 1D and 2D-NMR spectroscopies validates the identification of this osmolyte.