Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nenad Polomac is active.

Publication


Featured researches published by Nenad Polomac.


Schizophrenia Bulletin | 2015

Increased Resting-State Gamma-Band Connectivity in First-Episode Schizophrenia

Christina Andreou; Guido Nolte; Gregor Leicht; Nenad Polomac; Ileana L. Hanganu-Opatz; Martin Lambert; Andreas K. Engel; Christoph Mulert

BACKGROUND Schizophrenia has long been suggested to represent a disorder with prominent neural dysconnectivity. Gamma-band oscillations are highly relevant in this context, due both to their proposed involvement in neuronal synchronization and to their association with neurotransmitter systems relevant for schizophrenia. Several task-related studies have confirmed reduced power and synchronization of gamma-band oscillations in schizophrenia, but it has been suggested that these findings might not apply to the resting state. The present study aimed to investigate resting-state gamma-band connectivity in patients with schizophrenia. METHODS Sixty-four channel resting-state electroencephalography (eyes closed) was recorded in 22 patients with first-episode schizophrenia and 22 healthy controls matched for age and gender. Orthogonalized power envelope correlation was used as a measure of connectivity across 80 cortical regions at 40 Hz. Mean connectivity at each region was compared across groups using the nonparametric randomization approach. Additionally, the network-based statistic was applied to identify affected networks in patients. RESULTS Patients displayed increased mean functional gamma-band connectivity compared to controls in the left rolandic operculum. Network-based analyses indicated increased connectivity in patients within a strongly lateralized network consisting mainly of left inferior frontal/orbitofrontal, lateral and medial temporal, and inferior parietal areas. Within this network, gamma-band connectivity was higher in patients with low positive and disorganization symptom levels. CONCLUSIONS The present study provides a link between resting-state gamma-band connectivity and the core symptoms of schizophrenia. The observed findings are different than those reported by task-related studies, suggesting that resting-state studies might reveal new aspects in the pathophysiology of schizophrenia.


Schizophrenia Research | 2014

Resting-state connectivity in the prodromal phase of schizophrenia: Insights from EEG microstates

Christina Andreou; Pascal L. Faber; Gregor Leicht; Daniel Schoettle; Nenad Polomac; Ileana L. Hanganu-Opatz; Dietrich Lehmann; Christoph Mulert

INTRODUCTION Resting-state EEG microstates are thought to reflect the momentary local states and interactions of distributed neural networks in the brain. Several changes in resting-state EEG microstates have been described in acutely ill patients with schizophrenia, but it is not known whether these represent trait or state abnormalities. The present study aimed to investigate this issue by assessing EEG microstate characteristics in high-risk individuals (HR) and clinically stable first-episode patients with schizophrenia (SZ) with low symptom levels, compared to each other and healthy controls (HC). METHOD Participants were 18 HR, 18 SZ, and 22 HC subjects. 64-channel resting-state EEG recordings were used for microstate analyses. Microstates were clustered into four classes (A-D) according to their topography. Temporal parameters and topographies of microstates were compared among groups. RESULTS Microstate class A displayed higher coverage and occurrence in HR than SZ and HC, while microstate class B covered significantly more time in SZ compared to both HR and HC. Microstate class B displayed an aberrant spatial configuration in SZ, and to a lesser extent also in HR, compared to HC, with patients exhibiting significantly higher activity in the vicinity of the left posterior cingulate. DISCUSSION Microstate abnormalities observed in HR were similar to those previously reported in acutely ill patients with schizophrenia. Moreover, there was evidence that HR and SZ might share specific disturbances in brain functional connectivity. These findings raise the possibility that certain abnormalities in resting-state EEG microstates might be associated with an increased risk for psychosis.


NeuroImage | 2014

Conscious auditory perception related to long-range synchrony of gamma oscillations

Saskia Steinmann; Gregor Leicht; Matthias Ertl; Christina Andreou; Nenad Polomac; René Westerhausen; Angela D. Friederici; Christoph Mulert

While the role of synchronized oscillatory activity in the gamma-band frequency range for conscious perception is well established in the visual domain, there is limited evidence concerning neurophysiological mechanisms in conscious auditory perception. In the current study, we addressed this issue with 64-channel EEG and a dichotic listening (DL) task in twenty-five healthy participants. The typical finding of DL is a more frequent conscious perception of the speech syllable presented to the right ear (RE), which is attributed to the supremacy of the contralateral pathways running from the RE to the speech-dominant left hemisphere. In contrast, the left ear (LE) input initially accesses the right hemisphere and needs additional transfer via interhemispheric pathways before it is processed in the left hemisphere. Using lagged phase synchronization (LPS) analysis and eLORETA source estimation we examined the functional connectivity between right and left primary and secondary auditory cortices in the main frequency bands (delta, theta, alpha, beta, gamma) during RE/LE-reports. Interhemispheric LPS between right and left primary and secondary auditory cortices was specifically increased in the gamma-band range, when participants consciously perceived the syllable presented to the LE. Our results suggest that synchronous gamma oscillations are involved in interhemispheric transfer of auditory information.


World Journal of Biological Psychiatry | 2015

Reduced auditory evoked gamma band response and cognitive processing deficits in first episode schizophrenia.

Gregor Leicht; Christina Andreou; Nenad Polomac; Clarissa Lanig; Daniel Schöttle; Martin Lambert; Christoph Mulert

Abstract Objectives. Gamma-band oscillations (e.g., the early auditory evoked gamma-band response, aeGBR) have been suggested to mediate cognitive and perceptual processes by driving the synchronization of local neuronal populations. Reduced aeGBR is a consistent finding in patients with schizophrenia and high-risk subjects, and has been proposed to represent an endophenotype for the illness. However, it is still unclear whether this reduction represents a deficit in sensory or cognitive processes, or a combination of the two. The present study investigated this question by manipulating the difficulty of an auditory reaction task in patients with first-episode schizophrenia and healthy controls. Methods. A 64-channel EEG was recorded in 23 patients with first-episode schizophrenia and 22 healthy controls during two conditions of an auditory reaction task: an easy condition that merely required low-level vigilance, and a difficult condition that placed significant demands on attention and working memory. Results. In contrast to healthy controls, patients failed to increase aeGBR power and phase-locking in the difficult condition. In patients, aeGBR power and phase-locking indices were associated with working memory deficits. Conclusions. The observed results confirm the applicability of aeGBR disturbances as a stable endophenotype of schizophrenia, and suggest a cognitive, rather than sensory, deficit at their origin.


Schizophrenia Research | 2015

Resting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state

Christina Andreou; Gregor Leicht; Guido Nolte; Nenad Polomac; Steffen Moritz; Anne Karow; Ileana L. Hanganu-Opatz; Andreas K. Engel; Christoph Mulert

BACKGROUND Disturbed functional connectivity is assumed to underlie neurocognitive deficits in patients with schizophrenia. As neurocognitive deficits are already present in the high-risk state, identification of the neural networks involved in this core feature of schizophrenia is essential to our understanding of the disorder. Resting-state studies enable such investigations, while at the same time avoiding the known confounder of impaired task performance in patients. The aim of the present study was to investigate EEG resting-state connectivity in high-risk individuals (HR) compared to first episode patients with schizophrenia (SZ) and to healthy controls (HC), and its association with cognitive deficits. METHODS 64-channel resting-state EEG recordings (eyes closed) were obtained for 28 HR, 19 stable SZ, and 23 HC, matched for age, education, and parental education. The imaginary coherence-based multivariate interaction measure (MIM) was used as a measure of connectivity across 80 cortical regions and six frequency bands. Mean connectivity at each region was compared across groups using the non-parametric randomization approach. Additionally, the network-based statistic was applied to identify affected networks in patients. RESULTS SZ displayed increased theta-band resting-state MIM connectivity across midline, sensorimotor, orbitofrontal regions and the left temporoparietal junction. HR displayed intermediate theta-band connectivity patterns that did not differ from either SZ or HC. Mean theta-band connectivity within the above network partially mediated verbal memory deficits in SZ and HR. CONCLUSIONS Aberrant theta-band connectivity may represent a trait characteristic of schizophrenia associated with neurocognitive deficits. As such, it might constitute a promising target for novel treatment applications.


The Journal of Neuroscience | 2015

Neural Mechanisms of Placebo Anxiolysis

Benjamin Meyer; Kenneth Yuen; Matthias Ertl; Nenad Polomac; Christoph Mulert; Christian Büchel; Raffael Kalisch

The beneficial effects of placebo treatments on fear and anxiety (placebo anxiolysis) are well known from clinical practice, and there is strong evidence indicating a contribution of treatment expectations to the efficacy of anxiolytic drugs. Although clinically highly relevant, the neural mechanisms underlying placebo anxiolysis are poorly understood. In two studies in humans, we tested whether the administration of an inactive treatment along with verbal suggestions of anxiolysis can attenuate experimentally induced states of phasic fear and/or sustained anxiety. Phasic fear is the response to a well defined threat and includes attentional focusing on the source of threat and concomitant phasic increases of autonomic arousal, whereas in sustained states of anxiety potential and unclear danger requires vigilant scanning of the environment and elevated tonic arousal levels. Our placebo manipulation consistently reduced vigilance measured in terms of undifferentiated reactivity to salient cues (indexed by subjective ratings, skin conductance responses and EEG event-related potentials) and tonic arousal [indexed by cue-unrelated skin conductance levels and enhanced EEG alpha (8–12 Hz) activity], indicating a downregulation of sustained anxiety rather than phasic fear. We also observed a placebo-dependent sustained increase of frontal midline EEG theta (4–7 Hz) power and frontoposterior theta coupling, suggesting the recruitment of frontally based cognitive control functions. Our results thus support the crucial role of treatment expectations in placebo anxiolysis and provide insight into the underlying neural mechanisms.


Schizophrenia Bulletin | 2015

EEG-Informed fMRI Reveals a Disturbed Gamma-Band–Specific Network in Subjects at High Risk for Psychosis

Gregor Leicht; Sebastian Vauth; Nenad Polomac; Christina Andreou; Jonas Rauh; Marius Mußmann; Anne Karow; Christoph Mulert

Objectives. Abnormalities of oscillatory gamma activity are supposed to reflect a core pathophysiological mechanism underlying cognitive disturbances in schizophrenia. The auditory evoked gamma-band response (aeGBR) is known to be reduced across all stages of the disease. The present study aimed to elucidate alterations of an aeGBR-specific network mediated by gamma oscillations in the high-risk state of psychosis (HRP) by means of functional magnetic resonance imaging (fMRI) informed by electroencephalography (EEG). Methods. EEG and fMRI were simultaneously recorded from 27 HRP individuals and 26 healthy controls (HC) during performance of a cognitively demanding auditory reaction task. We used single trial coupling of the aeGBR with the corresponding blood oxygen level depending response (EEG-informed fMRI). Results. A gamma-band–specific network was significantly lower active in HRP subjects compared with HC (random effects analysis, P < .01, Bonferroni-corrected for multiple comparisons) accompanied by a worse task performance. This network involved the bilateral auditory cortices, the thalamus and frontal brain regions including the anterior cingulate cortex, as well as the bilateral dorsolateral prefrontal cortex. Conclusions. For the first time we report a reduced activation of an aeGBR-specific network in HRP subjects brought forward by EEG-informed fMRI. Because the HRP reflects the clinical risk for conversion to psychotic disorders including schizophrenia and the aeGBR has repeatedly been shown to be altered in patients with schizophrenia the results of our study point towards a potential applicability of aeGBR disturbances as a marker for the prediction of transition of HRP subjects to schizophrenia.


Brain Topography | 2015

Generators and Connectivity of the Early Auditory Evoked Gamma Band Response

Nenad Polomac; Gregor Leicht; Guido Nolte; Christina Andreou; Till R. Schneider; Saskia Steinmann; Andreas K. Engel; Christoph Mulert

High frequency oscillations in the gamma range are known to be involved in early stages of auditory information processing in terms of synchronization of brain regions, e.g., in cognitive functions. It has been shown using EEG source localisation, as well as simultaneously recorded EEG-fMRI, that the auditory evoked gamma-band response (aeGBR) is modulated by attention. In addition to auditory cortex activity a dorsal anterior cingulate cortex (dACC) generator could be involved. In the present study we investigated aeGBR magnetic fields using magnetoencephalography (MEG). We aimed to localize the aeGBR sources and its connectivity features in relation to mental effort. We investigated the aeGBR magnetic fields in 13 healthy participants using a 275-channel CTF-MEG system. The experimental paradigms were two auditory choice reaction tasks with different difficulties and demands for mental effort. We performed source localization with eLORETA and calculated the aeGBR lagged phase synchronization between bilateral auditory cortices and frontal midline structures. The eLORETA analysis revealed sources of the aeGBR within bilateral auditory cortices and in frontal midline structures of the brain including the dACC. Compared to the control condition the dACC source activity was found to be significantly stronger during the performance of the cognitively demanding task. Moreover, this task involved a significantly stronger functional connectivity between auditory cortices and dACC. In accordance with previous EEG and EEG-fMRI investigations, our study confirms an aeGBR generator in the dACC by means of MEG and suggests its involvement in the effortful processing of auditory stimuli.


Scientific Reports | 2017

Auditory verbal hallucinations related to altered long-range synchrony of gamma-band oscillations

Saskia Steinmann; Gregor Leicht; Christina Andreou; Nenad Polomac; Christoph Mulert

Our understanding of the neural correlates of auditory-verbal-hallucinations (AVH) has substantially increased during the last few years, but is far from sufficient. One current hypothesis, the interhemispheric miscommunication theory, is based on findings from fMRI, DTI and EEG, but there is only limited evidence so far concerning underlying functional coupling mechanisms. Here we report a 64-channel EEG study using lagged phase synchronization analysis and eLORETA source estimation to examine the functional connectivity between bilateral auditory cortices in the gamma-band in 26 schizophrenia patients (13 with and 13 without AVH) and 26 matched healthy controls (HC) while performing a dichotic listening task. We found a significantly reduced right-ear-advantage (REA) in AVH but not in non-AVH patients compared to HC. The major finding was significantly stronger gamma-band connectivity between bilateral auditory cortices during conscious perception of left (versus right) ear syllables in patients with AVH compared to HC and patients without AVH. A significant positive correlation was found between this connectivity alteration and the AVH symptom score in schizophrenia patients. These findings provide further support for the interhemispheric miscommunication hypothesis of AVH pathophysiology by indicating that aberrant gamma-band coupling between auditory cortices is related to the emergence of AVH in schizophrenia.


Journal of Psychiatry & Neuroscience | 2017

Glutamatergic deficit and schizophrenia-like negative symptoms: new evidence from ketamine-induced mismatch negativity alterations in healthy male humans

Stephanie Thiebes; Gregor Leicht; Stjepan Curic; Saskia Steinmann; Nenad Polomac; Christina Andreou; Iris Eichler; Lars Eichler; Christian Zöllner; Jürgen Gallinat; Ileana L. Hanganu-Opatz; Christoph Mulert

Background Targeting the N-methyl-D-aspartate receptor (NMDAR) is a major translational approach for treating negative symptoms of schizophrenia. Ketamine comprehensively produces schizophrenia-like symptoms, such as positive, cognitive and negative symptoms in healthy volunteers. The amplitude of the mismatch negativity (MMN) is known to be significantly reduced not only in patients with schizophrenia, but also in healthy controls receiving ketamine. Accordingly, it was the aim of the present study to investigate whether changes of MMN amplitudes during ketamine administration are associated with the emergence of schizophrenia-like negative symptoms in healthy volunteers. Methods We examined the impact of ketamine during an MMN paradigm with 64-channel electroencephalography (EEG) and assessed the psychopathological status using the Positive and Negative Syndrome Scale (PANSS) in healthy male volunteers using a single-blind, randomized, placebo-controlled crossover design. Low-resolution brain electromagnetic tomography was used for source localization. Results Twenty-four men were included in our analysis. Significant reductions of MMN amplitudes and an increase in all PANSS scores were identified under the ketamine condition. Smaller MMN amplitudes were specifically associated with more pronounced negative symptoms. Source analysis of MMN generators indicated a significantly reduced current source density (CSD) under the ketamine condition in the primary auditory cortex, the posterior cingulate and the middle frontal gyrus. Limitations The sample included only men within a tight age range of 20–32 years. Conclusion The MMN might represent a biomarker for negative symptoms in schizophrenia related to an insufficient NMDAR system and could be used to identify patients with schizophrenia with negative symptoms due to NMDAR dysfunction.

Collaboration


Dive into the Nenad Polomac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge