Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nianbing Zhong is active.

Publication


Featured researches published by Nianbing Zhong.


Analytical Chemistry | 2014

A Fiber-Optic Sensor for Accurately Monitoring Biofilm Growth in a Hydrogen Production Photobioreactor

Nianbing Zhong; Qiang Liao; Xun Zhu; Rong Chen

A new simple fiber-optic evanescent wave sensor was created to accurately monitor the growth and hydrogen production performance of biofilms. The proposed sensor consists of two probes (i.e., a sensor and reference probe), using the etched fibers with an appropriate surface roughness to improve its sensitivity. The sensor probe measures the biofilm growth and change of liquid-phase concentration inside the biofilm. The reference probe is coated with a hydrophilic polytetrafluoroethylene membrane to separate the liquids from photosynthetic bacteria Rhodopseudomonas palustris CQK 01 and to measure the liquid concentration. We also developed a model to demonstrate the accuracy of the measurement. The biofilm measurement was calibrated using an Olympus microscope. A linear relationship was obtained for the biofilm thickness range from 0 to 120 μm with a synthetic medium under continuous supply to the bioreactor. The highest level of hydrogen production rate occurred at a thickness of 115 μm.


Scientific Reports | 2015

Temperature-independent polymer optical fiber evanescent wave sensor.

Nianbing Zhong; Qiang Liao; Xun Zhu; Mingfu Zhao; Yun Huang; Rong Chen

Although the numerous advantages of polymer optical fibers have been exploited in the fields of sensors and telecommunications, such fibers still experience a critical problem: the temperature dependency. Therefore, we explored the temperature-independent operation of a polymer fiber-optic evanescent wave sensor immersed in distilled water. We investigated variations in the surface morphology, deformation trajectory, refractive index, and weight of the fiber-sensing region with varying water temperature. We also examined the spectral transmission and transmitted light intensity of fibers subjected to a heating-cooling treatment. We observed that the light-transmission modes and sensitivity of the sensor were affected by changes in the surface morphology, diameter, and refractive index of the sensing region caused by changes in temperature. The transmitted light intensity of the sensor was maintained at a constant level after five cycles of the heating-cooling treatment, after which the fibers exhibited a smooth surface, low refractive index, and large fiber diameter. Consequently, we utilized the heating-cooling-treated fiber to realize a temperature-independent, U-shaped polymer fiber-optic evanescent wave sensor. The temperature independence was evaluated using glucose solutions in the range of 10 to 70 °C. The fabricated sensor showed significant temperature independence and high degree of consistency in measuring solutions.


Biosensors and Bioelectronics | 2016

A high-sensitivity fiber-optic evanescent wave sensor with a three-layer structure composed of Canada balsam doped with GeO2

Nianbing Zhong; Mingfu Zhao; Lianchao Zhong; Qiang Liao; Xun Zhu; Bin-bin Luo; Yishan Li

In this paper, we present a high-sensitivity polymer fiber-optic evanescent wave (FOEW) sensor with a three-layer structure that includes bottom, inter-, and surface layers in the sensing region. The bottom layer and inter-layer are POFs composed of standard cladding and the core of the plastic optical fiber, and the surface layer is made of dilute Canada balsam in xylene doped with GeO2. We examine the morphology of the doped GeO2, the refractive index and composition of the surface layer and the surface luminous properties of the sensing region. We investigate the effects of the content and morphology of the GeO2 particles on the sensitivity of the FOEW sensors by using glucose solutions. In addition, we examine the response of sensors incubated with staphylococcal protein A plus mouse IgG isotype to goat anti-mouse IgG solutions. Results indicate very good sensitivity of the three-layer FOEW sensor, which showed a 3.91-fold improvement in the detection of the target antibody relative to a conventional sensor with a core-cladding structure, and the novel sensor showed a lower limit of detection of 0.2ng/l and a response time around 320s. The application of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, biomedical and biochemical analysis.


Analytical Chemistry | 2014

Fiber Bragg grating with polyimide-silica hybrid membrane for accurately monitoring cell growth and temperature in a photobioreactor.

Nianbing Zhong; Qiang Liao; Xun Zhu; Mingfu Zhao

A microstructured fiber Bragg grating (MSFBG) was created to accurately and simultaneously monitor the cell growth of photosynthetic bacteria (PSB) Rhodopseudomonas palustris CQK 01 and the temperature in a photobioreactor. The proposed sensor was made from an FBG unit that was separated into three regions, an unperturbed region, and two etched regions with smooth surfaces. The unperturbed grating region was employed to monitor the temperature. To eliminate the effects of the liquid concentration and temperature on the biomass, a polyimide-silica hybrid membrane was created and coated on an etched grating region to separate the liquids from the PSB; that is, this thinned region was developed to analyze the liquid concentration and temperature. Another etched grating region with a smaller diameter was used to determine the response to the temperature, biomass, and liquid concentration. In addition, two models were also presented to demonstrate accurate simultaneous measurement of the biomass and temperature. We discovered that the MSFBG sensor can rapidly and accurately determine the difference in the Bragg wavelength shifts caused by changes in the temperature, biomass, and liquid-phase concentration. The measured biomass is highly correlated with the real cell growth, with a correlation of 0.9438; the hydrogen production rate and temperature difference from metabolic heat production reached 1.97 mmol/L/h and 2.8 °C, respectively, in the PSB culture.


Biosensors and Bioelectronics | 2017

High-sensitivity four-layer polymer fiber-optic evanescent wave sensor

Xin Xin; Nianbing Zhong; Qiang Liao; Yanyan Cen; Ruohua Wu; Zhengkun Wang

We present a novel four-layer structure consisting of bottom, second, third, and surface layers in the sensing region, for a D-shaped step-index fiber-optic evanescent wave (FOEW) sensor. To reduce the background noise, the surface of the longitudinal section in the D-shaped region is coated with a light-absorbing film. We check the morphologies of the second and surface layers, examine the refractive indices (RIs) of the third and surface layers, and analyze the composition of the surface layer. We also investigate the effects of the thicknesses and RIs of the third and surface layers and the LA film on the light transmission and sensitivity of the FOEW sensors. The results highlight the very good sensitivity of the proposed FOEW sensor with a four-layer structure, which reached -0.077 (μg/l)-1 in the detection of the target antibody; the sensitivity of the novel FOEW sensor was 7.60 and 1.52 times better than that of a conventional sensor with a core-cladding structure and an FOEW sensor with a three-layer structure doped with GeO2. The applications of this high-sensitivity FOEW sensor can be extended to biodefense, disease diagnosis, and biomedical and biochemical analysis.


Bioresource Technology | 2018

Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients

Qiang Liao; Hai-Xing Chang; Qian Fu; Yun Huang; Ao Xia; Xun Zhu; Nianbing Zhong

To comprehensively understand kinetic characteristics of microalgae growth and lipid synthesis in different phases, a phase-feeding strategy was proposed to simultaneously regulate light, carbon and nutrients in adaption, growth and stationary phases of microalgae cultivation. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis under synergistic effects of light, carbon and nutrients were investigated, and supply-demand relationships of electrons and energy between light and dark reactions of photosynthesis process were discussed. Finally, the optimized cultivation strategy for microalgae in various phases were obtained, under which the lipid productivity was significantly improved from 130.11 mg/L/d to 163.42 mg/L/d. The study provided some important guidance for the large-scale production of biofuels from microalgae.


Biomedical Optics Express | 2017

Human heart failure biomarker immunosensor based on excessively tilted fiber gratings

Binbin Luo; Shengxi Wu; Zhonghao Zhang; Wengen Zou; Shenghui Shi; Mingfu Zhao; Nianbing Zhong; Yong Liu; Xue Zou; Lingling Wang; Weina Chai; Chuanmin Hu; Lin Zhang

A label-free immunosensor platform based on excessively tilted fiber gratings (Ex-TFGs) was developed for highly specific and fast detection of human N-terminal pro-B-type natriuretic peptide (NT-proBNP), which is considered a powerful biomarker for prognosis and risk stratification of heart failure (HF). High-purity anti-NT-proBNP monoclonal antibodies (MAbs) prepared in our laboratory were immobilized on fiber surface through the staphylococcal protein A (SPA) method for subsequent specific binding of the targeted NT-proBNP. Utilizing fiber optic grating demodulation system (FOGDS), immunoassays were carried out in vitro by monitoring the resonance wavelength shift of Ex-TFG biosensor with immobilized anti-NT-proBNP MAbs. Lowest detectable concentration of ~0.5ng/mL for NT-proBNP was obtained, and average sensitivity for NT-proBNP at a concentration range of 0~1.0 ng/mL was approximately 45.967 pm/(ng/mL). Several human serum samples were assessed by the proposed Ex-TFG biomarker sensor, with high specificity for NT-proBNP, indicating potential application in early diagnosing patients with acute HF symptoms.


Optics Express | 2016

Effect of heat treatments on the performance of polymer optical fiber sensor

Nianbing Zhong; Mingfu Zhao; Qiang Liao; Xun Zhu; Yishan Li; Zhonggang Xiong

Although the numerous advantages of polymer optical fiber (POF) sensors have been applied in different fields, the measurement consistency and sensitivity of POF evanescent wave (EW) sensors are still affected by its thermal stability and water absorption. Therefore, we perform a study to demonstrate the mechanism of the effect of heat treatments on physical and optical properties of POF EW sensors. We investigate the surface morphology, composition, refractive index, geometry, and weight of the fiber-sensing region subjected to water and vacuum heat treatments. We examine the spectral transmission and transmitted light intensity of POF sensors. We present a theoretical investigation of the effect of heat treatments on the sensitivity of POF EW sensors. The performance of the prepared sensor is evaluated using glucose and Chlorella pyrenoidosa analytes. We discovered that the spectral transmission and transmitted light intensity of the fibers shows little effect of vacuum heat treatments. In particular, the sensors, which subject to vacuum heat treatment at 110 °C for 3 h, exhibit temperature-independent measuring consistency and high sensitivity in glucose solutions in the temperature range 15-60 °C and also show high sensitivity in Chlorella pyrenoidosa solutions.


Biomedical Optics Express | 2016

U-shaped, double-tapered, fiber-optic sensor for effective biofilm growth monitoring

Nianbing Zhong; Mingfu Zhao; Yishan Li

To monitor biofilm growth on polydimethylsiloxane in a photobioreactor effectively, the biofilm cells and liquids were separated and measured using a sensor with two U-shaped, double-tapered, fiber-optic probes (Sen. and Ref. probes). The probes’ Au-coated hemispherical tips enabled double-pass evanescent field absorption. The Sen. probe sensed the cells and liquids inside the biofilm. The polyimide–silica hybrid-film-coated Ref. probe separated the liquids from the biofilm cells and analyzed the liquid concentration. The biofilm structure and active biomass were also examined to confirm the effectiveness of the measurement using a simulation model. The sensor was found to effectively respond to the biofilm growth in the adsorption through exponential phases at thicknesses of 0–536 μm.


Applied Optics | 2015

Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor

Nianbing Zhong; Qiang Liao; Xun Zhu; Mingfu Zhao

A fiber-optic differential absorption sensor was developed to accurately monitor biomass growth in a photobioreactor. The prepared sensor consists of two probes: the sensor and the reference. The sensor probe was employed to monitor the biomass and changes in the liquid-phase concentration in a culture. To separate the liquids from photosynthetic bacteria CQK 01 and measure the liquid-phase concentration, a proposed polyimide-silica hybrid membrane was coated on the sensing region of the reference probe. A linear relationship was observed between the sensor output signal and the biomass from the lag phase to the decline phase.

Collaboration


Dive into the Nianbing Zhong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xun Zhu

Chongqing University

View shared research outputs
Top Co-Authors

Avatar

Binbin Luo

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhengkun Wang

Chongqing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Xin Xin

Chongqing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ming Chen

Chongqing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shenghui Shi

Chongqing University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge