Nicholas A. Be
Lawrence Livermore National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas A. Be.
Journal of Clinical Microbiology | 2014
Nicholas A. Be; Jonathan E. Allen; Trevor S. Brown; Shea N. Gardner; Kevin S. McLoughlin; Jonathan A. Forsberg; Benjamin C. Kirkup; Brett A. Chromy; Paul A. Luciw; Eric A. Elster; Crystal Jaing
ABSTRACT Combat wound healing and resolution are highly affected by the resident microbial flora. We therefore sought to achieve comprehensive detection of microbial populations in wounds using novel genomic technologies and bioinformatics analyses. We employed a microarray capable of detecting all sequenced pathogens for interrogation of 124 wound samples from extremity injuries in combat-injured U.S. service members. A subset of samples was also processed via next-generation sequencing and metagenomic analysis. Array analysis detected microbial targets in 51% of all wound samples, with Acinetobacter baumannii being the most frequently detected species. Multiple Pseudomonas species were also detected in tissue biopsy specimens. Detection of the Acinetobacter plasmid pRAY correlated significantly with wound failure, while detection of enteric-associated bacteria was associated significantly with successful healing. Whole-genome sequencing revealed broad microbial biodiversity between samples. The total wound bioburden did not associate significantly with wound outcome, although temporal shifts were observed over the course of treatment. Given that standard microbiological methods do not detect the full range of microbes in each wound, these data emphasize the importance of supplementation with molecular techniques for thorough characterization of wound-associated microbes. Future application of genomic protocols for assessing microbial content could allow application of specialized care through early and rapid identification and management of critical patterns in wound bioburden.
Microbial Ecology | 2015
Nicholas A. Be; James B. Thissen; Viacheslav Y. Fofanov; Jonathan E. Allen; Mark Rojas; George Golovko; Yuriy Fofanov; Heather Koshinsky; Crystal Jaing
The organisms in aerosol microenvironments, especially densely populated urban areas, are relevant to maintenance of public health and detection of potential epidemic or biothreat agents. To examine aerosolized microorganisms in this environment, we performed sequencing on the material from an urban aerosol surveillance program. Whole metagenome sequencing was applied to DNA extracted from air filters obtained during periods from each of the four seasons. The composition of bacteria, plants, fungi, invertebrates, and viruses demonstrated distinct temporal shifts. Bacillus thuringiensis serovar kurstaki was detected in samples known to be exposed to aerosolized spores, illustrating the potential utility of this approach for identification of intentionally introduced microbial agents. Together, these data demonstrate the temporally dependent metagenomic complexity of urban aerosols and the potential of genomic analytical techniques for biosurveillance and monitoring of threats to public health.
PLOS ONE | 2013
Ciaran Skerry; Supriya Pokkali; Michael L. Pinn; Nicholas A. Be; Jamie Harper; Petros C. Karakousis; Sanjay K. Jain
Background We have previously identified Mycobacterium tuberculosis PknD to be an important virulence factor required for the pathogenesis of central nervous system (CNS) tuberculosis (TB). Specifically, PknD mediates bacillary invasion of the blood-brain barrier, which can be neutralized by specific antisera, suggesting its potential role as a therapeutic target against TB meningitis. Methodology/Principal Findings We utilized an aerosol challenge guinea pig model of CNS TB and compared the protective efficacy of recombinant M. tuberculosis PknD subunit protein with that of M. bovis BCG against bacillary dissemination to the brain. BCG vaccination limited the pulmonary bacillary burden after aerosol challenge with virulent M. tuberculosis in guinea pigs and also reduced bacillary dissemination to the brain (Pu200a=u200a0.01). PknD vaccination also offered significant protection against bacterial dissemination to the brain, which was no different from BCG (P>0.24), even though PknD vaccinated animals had almost 100-fold higher pulmonary bacterial burdens. Higher levels of PknD-specific IgG were noted in animals immunized with PknD, but not in BCG-vaccinated or control animals. Furthermore, pre-incubation of M. tuberculosis with sera from PknD-vaccinated animals, but not with sera from BCG-vaccinated or control animals, significantly reduced bacterial invasion in a human blood-brain barrier model (P<0.01). Conclusion Current recommendations for administering BCG at birth are based on protection gained against severe disease, such as TB meningitis, during infancy. We demonstrate that vaccination with recombinant M. tuberculosis PknD subunit offers a novel strategy to protect against TB meningitis, which is equivalent to BCG in a guinea pig model. Moreover, since BCG lacks the PknD sensor, BCG could also be boosted to develop a more effective vaccine against TB meningitis, a devastating disease that disproportionately affects young children.
Journal of Translational Medicine | 2013
Brett A. Chromy; Angela Eldridge; Jonathan A. Forsberg; Trevor S. Brown; Benjamin C. Kirkup; Crystal Jaing; Nicholas A. Be; Eric A. Elster; Paul A. Luciw
BackgroundThe ability to forecast whether a wound will heal after closure without further debridement(s), would provide substantial benefits to patients with severe extremity trauma.MethodsWound effluent is a readily available material which can be collected without disturbing healthy tissue. For analysis of potential host response biomarkers, forty four serial combat wound effluent samples from 19 patients with either healing or failing traumatic- and other combat-related wounds were examined by 2-D DIGE. Spot map patterns were correlated to eventual wound outcome (healed or wound failure) and analyzed using DeCyder 7.0 and differential proteins identified via LC-MS/MS.ResultsThis approach identified 52 protein spots that were differentially expressed and thus represent candidate biomarkers for this clinical application. Many of these proteins are intimately involved in inflammatory and immune responses. Furthermore, discriminate analysis further refined the 52 differential protein spots to a smaller subset of which successfully differentiate between wounds that will heal and those that will fail and require further surgical intervention with greater than 83% accuracy.ConclusionThese results suggest candidates for a panel of protein biomarkers that may aid traumatic wound care prognosis and treatment. We recommend that this strategy be refined, and then externally validated, in future studies of traumatic wounds.
Journal of Physical Chemistry B | 2017
Brian J. Bennion; Nicholas A. Be; M. Windy McNerney; Victoria Lao; Emma M. Carlson; Carlos A. Valdez; Michael A. Malfatti; Heather A. Enright; Tuan H. Nguyen; Felice C. Lightstone; Timothy S. Carpenter
Membrane permeability is a key property to consider during the drug design process, and particularly vital when dealing with small molecules that have intracellular targets as their efficacy highly depends on their ability to cross the membrane. In this work, we describe the use of umbrella sampling molecular dynamics (MD) computational modeling to comprehensively assess the passive permeability profile of a range of compounds through a lipid bilayer. The model was initially calibrated through in vitro validation studies employing a parallel artificial membrane permeability assay (PAMPA). The model was subsequently evaluated for its quantitative prediction of permeability profiles for a series of custom synthesized and closely related compounds. The results exhibited substantially improved agreement with the PAMPA data, relative to alternative existing methods. Our work introduces a computational model that underwent progressive molding and fine-tuning as a result of its synergistic collaboration with numerous in vitro PAMPA permeability assays. The presented computational model introduces itself as a useful, predictive tool for permeability prediction.
Mbio | 2017
Nicholas A. Be; Aram Avila-Herrera; Jonathan E. Allen; Nitin K. Singh; Aleksandra Checinska Sielaff; Crystal Jaing; Kasthuri Venkateswaran
BackgroundThe built environment of the International Space Station (ISS) is a highly specialized space in terms of both physical characteristics and habitation requirements. It is unique with respect to conditions of microgravity, exposure to space radiation, and increased carbon dioxide concentrations. Additionally, astronauts inhabit a large proportion of this environment. The microbial composition of ISS particulates has been reported; however, its functional genomics, which are pertinent due to potential impact of its constituents on human health and operational mission success, are not yet characterized.MethodsThis study examined the whole metagenome of ISS microbes at both species- and gene-level resolution. Air filter and dust samples from the ISS were analyzed and compared to samples collected in a terrestrial cleanroom environment. Furthermore, metagenome mining was carried out to characterize dominant, virulent, and novel microorganisms. The whole genome sequences of select cultivable strains isolated from these samples were extracted from the metagenome and compared.ResultsSpecies-level composition in the ISS was found to be largely dominated by Corynebacterium ihumii GD7, with overall microbial diversity being lower in the ISS relative to the cleanroom samples. When examining detection of microbial genes relevant to human health such as antimicrobial resistance and virulence genes, it was found that a larger number of relevant gene categories were observed in the ISS relative to the cleanroom. Strain-level cross-sample comparisons were made for Corynebacterium, Bacillus, and Aspergillus showing possible distinctions in the dominant strain between samples.ConclusionSpecies-level analyses demonstrated distinct differences between the ISS and cleanroom samples, indicating that the cleanroom population is not necessarily reflective of space habitation environments. The overall population of viable microorganisms and the functional diversity inherent to this unique closed environment are of critical interest with respect to future space habitation. Observations and studies such as these will be important to evaluating the conditions required for long-term health of human occupants in such environments.
PLOS ONE | 2016
Shea N. Gardner; Kevin S. McLoughlin; Nicholas A. Be; Jonathan E. Allen; Scott C. Weaver; Naomi L. Forrester; Mathilde Guerbois; Crystal Jaing
Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus that has caused large outbreaks of severe illness in both horses and humans. New approaches are needed to rapidly infer the origin of a newly discovered VEEV strain, estimate its equine amplification and resultant epidemic potential, and predict human virulence phenotype. We performed whole genome single nucleotide polymorphism (SNP) analysis of all available VEE antigenic complex genomes, verified that a SNP-based phylogeny accurately captured the features of a phylogenetic tree based on multiple sequence alignment, and developed a high resolution genome-wide SNP microarray. We used the microarray to analyze a broad panel of VEEV isolates, found excellent concordance between array- and sequence-based SNP calls, genotyped unsequenced isolates, and placed them on a phylogeny with sequenced genomes. The microarray successfully genotyped VEEV directly from tissue samples of an infected mouse, bypassing the need for viral isolation, culture and genomic sequencing. Finally, we identified genomic variants associated with serotypes and host species, revealing a complex relationship between genotype and phenotype.
Mbio | 2017
Nicholas A. Be; Aram Avila-Herrera; Jonathan E. Allen; Nitin K. Singh; Aleksandra Checinska Sielaff; Crystal Jaing; Kasthuri Venkateswaran
Author details Physical and Life Sciences Directorate, Lawrence Livermore NationalLaboratory, Livermore, CA, USA. Computation Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA. Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, M/S 89-2, 4800 Oak Grove Dr, Pasadena, CA 91109, USA. Present Address: Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
Chemico-Biological Interactions | 2017
Michael A. Malfatti; Heather A. Enright; Nicholas A. Be; Edward A. Kuhn; Saphon Hok; M. Windy McNerney; Victoria Lao; Tuan H. Nguyen; Felice C. Lightstone; Timothy S. Carpenter; Brian J. Bennion; Carlos A. Valdez
Organophosphorus-based (OP) nerve agents represent some of the most toxic substances known to mankind. The current standard of care for exposure has changed very little in the past decades, and relies on a combination of atropine to block receptor activity and oxime-type acetylcholinesterase (AChE) reactivators to reverse the OP binding to AChE. Although these oximes can block the effects of nerve agents, their overall efficacy is reduced by their limited capacity to cross the blood-brain barrier (BBB). RS194B, a new oxime developed by Radic etxa0al. (J.xa0Biol. Chem., 2012) has shown promise for enhanced ability to cross the BBB. To fully assess the potential of this compound as an effective treatment for nerve agent poisoning, a comprehensive evaluation of its pharmacokinetic (PK) and biodistribution profiles was performed using both intravenous and intramuscular exposure routes. The ultra-sensitive technique of accelerator mass spectrometry was used to quantify the compounds PK profile, tissue distribution, and brain/plasma ratio at four dose concentrations in guinea pigs. PK analysis revealed a rapid distribution of the oxime with a plasma t1/2 of ∼1xa0h. Kidney and liver had the highest concentrations per gram of tissue followed by lung, spleen, heart and brain for all dose concentrations tested. The Cmax in the brain ranged between 0.03 and 0.18% of the administered dose, and the brain-to-plasma ratio ranged from 0.04xa0at the 10xa0mg/kg dose to 0.18xa0at the 200xa0mg/kg dose demonstrating dose dependent differences in brain and plasma concentrations. Inxa0vitro studies show that both passive diffusion and active transport contribute little to RS194B traversal of the BBB. These results indicate that biodistribution is widespread, but very low quantities accumulate in the guinea pig brain, indicating this compound may not be suitable as a centrally active reactivator.
Archive | 2017
Carlos A. Valdez; Nicholas A. Be; Brian J. Bennion; Tim S. Carpenter; Heather A. Enright; Felice C. Lightstone; Mike Malfatti; Margaret Windy Mcnerney; Tuan H. Nguyen