Nicholas A. Castello
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas A. Castello.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mathew Blurton-Jones; Masashi Kitazawa; Hilda Martinez-Coria; Nicholas A. Castello; Franz-Josef Müller; Jeanne F. Loring; Tritia R. Yamasaki; Wayne W. Poon; Kim N. Green; Frank M. LaFerla
Neural stem cell (NSC) transplantation represents an unexplored approach for treating neurodegenerative disorders associated with cognitive decline such as Alzheimer disease (AD). Here, we used aged triple transgenic mice (3xTg-AD) that express pathogenic forms of amyloid precursor protein, presenilin, and tau to investigate the effect of neural stem cell transplantation on AD-related neuropathology and cognitive dysfunction. Interestingly, despite widespread and established Aß plaque and neurofibrillary tangle pathology, hippocampal neural stem cell transplantation rescues the spatial learning and memory deficits in aged 3xTg-AD mice. Remarkably, cognitive function is improved without altering Aß or tau pathology. Instead, the mechanism underlying the improved cognition involves a robust enhancement of hippocampal synaptic density, mediated by brain-derived neurotrophic factor (BDNF). Gain-of-function studies show that recombinant BDNF mimics the beneficial effects of NSC transplantation. Furthermore, loss-of-function studies show that depletion of NSC-derived BDNF fails to improve cognition or restore hippocampal synaptic density. Taken together, our findings demonstrate that neural stem cells can ameliorate complex behavioral deficits associated with widespread Alzheimer disease pathology via BDNF.
Neuroscience | 2010
Nicole C. Berchtold; Nicholas A. Castello; Carl W. Cotman
While it is well established that exercise can improve cognitive performance, it is unclear how long these benefits endure after exercise has ended. Accordingly, the effects of voluntary exercise on cognitive function and brain-derived neurotrophic factor (BDNF) protein levels, a major player in the mechanisms governing the dynamics of memory formation and storage, were assessed immediately after a 3-week running period, or after a 1-week or 2-week delay following the exercise period. All exercised mice showed improved performance on the radial arm water maze relative to sedentary animals. Unexpectedly, fastest acquisition (fewest errors and shortest latency) occurred in animals trained following a 1-week delay, while best memory performance in the probe trial was observed in those trained immediately after the exercise period. Assessment of the time course of hippocampal BDNF availability following exercise revealed significant elevations of BDNF immediately after the exercise period (186% of sedentary levels) and at 1 and 2 weeks after exercise ended, with levels returning to baseline by 3-4 weeks. BDNF protein levels showed a positive correlation with cognitive improvement in radial water maze training and with memory performance on day 4, supporting the idea that BDNF availability contributes to the time-dependent cognitive benefits of exercise revealed in this study. Overall, this novel approach assessing the temporal endurance of cognitive and biochemical effects of exercise unveils new concepts in the exercise-learning field, and reveals that beneficial effects of exercise on brain plasticity continue to evolve even after exercise has ended.
Neurobiology of Learning and Memory | 2008
Benno Roozendaal; Nicholas A. Castello; Gustavo Vedana; Areg Barsegyan; James L. McGaugh
Noradrenergic activation of the basolateral complex of the amygdala (BLA) modulates the consolidation of memory for many kinds of highly emotionally arousing training tasks. The present experiments investigated whether posttraining noradrenergic activation of the BLA is sufficient to enable memory consolidation of a low-arousing training experience. Sprague-Dawley rats received intra-BLA infusions of norepinephrine, the beta-adrenoceptor antagonist propranolol or saline immediately after either 3 or 10 min of object recognition training. Saline-infused controls exhibited poor 24-h retention when given 3 min of object recognition training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object recognition training produced dose-dependent enhancement of 24-h object recognition memory whereas propranolol administered after 10 min of training produced dose-dependent impairment of memory. These findings provide evidence that posttraining noradrenergic activation of the BLA enhances memory of a low-arousing training experience that would otherwise not induce long-term memory. Thus, regardless of the degree of emotional arousal induced by an experience, noradrenergic activation of the BLA after the experience ensures that it will be better remembered.
Stem Cell Research & Therapy | 2014
Mathew Blurton-Jones; Brian Spencer; Sara Michael; Nicholas A. Castello; Andranik Agazaryan; Joy Davis; Franz-Josef Müller; Jeanne F. Loring; Eliezer Masliah; Frank M. LaFerla
IntroductionShort-term neural stem cell (NSC) transplantation improves cognition in Alzheimer’s disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches.MethodsTo begin to examine this question we genetically-modified NSCs to stably express and secrete the Aβ-degrading enzyme, neprilysin (sNEP). Next, we studied the effects of sNEP expression in vitro by quantifying Aβ-degrading activity, NSC multipotency markers, and Aβ-induced toxicity. To determine whether sNEP-expressing NSCs can also modulate AD-pathogenesis in vivo, control-modified and sNEP-NSCs were transplanted unilaterally into the hippocampus of two independent and well characterized transgenic models of AD: 3xTg-AD and Thy1-APP mice. After three months, stem cell engraftment, neprilysin expression, and AD pathology were examined.ResultsOur findings reveal that stem cell-mediated delivery of NEP provides marked and significant reductions in Aβ pathology and increases synaptic density in both 3xTg-AD and Thy1-APP transgenic mice. Remarkably, Aβ plaque loads are reduced not only in the hippocampus and subiculum adjacent to engrafted NSCs, but also within the amygdala and medial septum, areas that receive afferent projections from the engrafted region.ConclusionsTaken together, our data suggest that genetically-modified NSCs could provide a powerful combinatorial approach to not only enhance synaptic plasticity but to also target and modify underlying Alzheimer’s disease pathology.
PLOS ONE | 2014
Nicholas A. Castello; Michael H. Nguyen; Jenny D. Tran; David Cheng; Kim N. Green; Frank M. LaFerla
Augmenting BDNF/TrkB signaling has been demonstrated to be a promising strategy for reversing cognitive deficits in preclinical models of Alzheimer disease (AD). Although these studies highlight the potential of targeting BDNF/TrkB signaling, this strategy has not yet been tested in a model that develops the disease features that are most closely associated with cognitive decline in AD: severe synaptic and neuronal loss. In the present study, we investigated the impact of 7,8-dihydroxyflavone (DHF), a TrkB agonist, in CaM/Tet-DTA mice, an inducible model of severe neuronal loss in the hippocampus and cortex. Systemic 7,8-DHF treatment significantly improved spatial memory in lesioned mice, as measured by water maze. Analysis of GFP-labeled neurons in CaM/Tet-DTA mice revealed that 7,8-DHF induced a significant and selective increase in the density of thin spines in CA1 of lesioned mice, without affecting mushroom or stubby spines. These findings suggest chronic upregulation of TrkB signaling with 7,8-DHF may be an effective and practical strategy for improving function in AD, even after substantial neuronal loss has occurred.
Neurobiology of Disease | 2014
Meredith A. Chabrier; David Cheng; Nicholas A. Castello; Kim N. Green; Frank M. LaFerla
Synapse number is the best indicator of cognitive impairment In Alzheimers disease (AD), yet the respective contributions of Aβ and tau, particularly human wild-type tau, to synapse loss remain undefined. Here, we sought to elucidate the Aβ-dependent changes in wild-type human tau that trigger synapse loss and cognitive decline in AD by generating two novel transgenic mouse models. The first overexpresses floxed human APP with Swedish and London mutations under the thy1 promoter, and recapitulates important features of early AD, including accumulation of soluble Aβ and oligomers, but no plaque formation. Transgene excision via Cre-recombinase reverses cognitive decline, even at 18-months of age. Secondly, we generated a human wild-type tau-overexpressing mouse. Crossing of the two animals accelerates cognitive impairment, causes enhanced accumulation and aggregation of tau, and results in reduction of dendritic spines compared to single transgenic hTau or hAPP mice. These results suggest that Aβ-dependent acceleration of wild-type human tau pathology is a critical component of the lasting changes to dendritic spines and cognitive impairment found in AD.
American Journal of Pathology | 2014
Rodrigo Medeiros; Nicholas A. Castello; David Cheng; Masashi Kitazawa; David Baglietto-Vargas; Kim N. Green; Timothy A. Esbenshade; Robert S. Bitner; Michael W. Decker; Frank M. LaFerla
Alzheimer disease (AD) is a progressive neurodegenerative disorder with associated memory loss, spatial disorientation, and other psychiatric problems. Cholinergic system dysfunction is an early and salient feature of AD, and enhancing cholinergic signaling with acetylcholinesterase inhibitors is currently the primary strategy for improving cognition. The beneficial effects of acetylcholinesterase inhibitors, however, are typically short-lived and accompanied by adverse effects. Recent evidence suggests that activating α7 nicotinic acetylcholine receptors (α7 nAChR) may facilitate the specific modulation of brain cholinergic signaling, leading to cognitive enhancement and possibly to amelioration of AD pathologic findings. In the present study, we determined the effect of long-term treatment with the selective α7 nAChR agonist A-582941 in aged 3xTg-AD mice with robust AD-like pathology, which is particularly significant not only because this is the only mouse model that co-develops amyloid plaques and neurofibrillary tangles but also because it enabled us to explore whether A-582941 is able to restore brain function after the severe damage associated with AD. Analysis of β-amyloid deposits, tau phosphorylation, and inflammatory cells revealed that, overall, pathologic findings were unchanged. Rather, α7 nAChR activation induced expression of c-Fos and brain-derived neurotrophic factor and phosphorylation of cyclic adenosine monophosphate response element binding and neurotrophic tyrosine receptor kinase type 2. More important, A-582941 completely restored cognition in aged 3xTg-AD mice to the level of that in age-matched nontransgenic mice. These novel findings indicate that activating α7 nAChR is a promising treatment for cognitive impairment in AD.
PLOS ONE | 2012
Nicholas A. Castello; Kim N. Green; Frank M. LaFerla
Brain-derived neurotrophic factor (BDNF) is a neurotrophin critically involved in cell survival, synaptic plasticity, and memory. BDNF has recently garnered significant attention as a potential therapeutic target for neurodegenerative diseases such as Alzheimer disease (AD), but emerging evidence suggests that BDNF may also be mechanistically involved in the pathogenesis of AD. AD patients have substantially reduced BDNF levels, which may be a result of Aβ and tau pathology. Recent evidence, however, indicates reduced BDNF levels may also serve to drive pathology in neuronal cultures, although this has not yet been established in vivo. To further investigate the mechanistic role of BDNF in AD, we generated 3xTg-AD mice with a heterozygous BDNF knockout (BDNF+/−) and analyzed Aβ and tau pathology. Aged 3xTg-AD/BDNF+/− mice have significantly reduced levels of brain BDNF, but have comparable levels of Aβ and tau pathology to 3xTg-AD/BDNF+/+ mice. These findings indicate that chronic reduction of BDNF does not exacerbate the development of Aβ and tau pathology, and instead suggests the reduced BDNF levels found in AD patients are a consequence of these pathologies.
Neurophotonics | 2014
Alexander J. Lin; Gangjun Liu; Nicholas A. Castello; James Yeh; Rombod Rahimian; Grace Lee; Victoria Tsay; Anthony J. Durkin; Bernard Choi; Frank M. LaFerla; Zhongping Chen; Kim N. Green; Bruce J. Tromberg
Abstract. Alzheimer’s disease (AD) and cerebrovascular disease are often comorbid conditions, but the relationship between amyloid-β and in vivo vascular pathophysiology is poorly understood. We utilized a multimodal, multiscale optical imaging approach, including spatial frequency domain imaging, Doppler optical coherence tomography, and confocal microscopy, to quantify AD-dependent changes in a triple transgenic mouse model (3xTg-AD) and age-matched controls. From three months of age (naïve) to 20 months (severe AD), the brain tissue concentration of total and oxy-hemoglobin (Total Hb, ctO2Hb) decreased 50 and 70%, respectively, in 3xTg-AD mice. Compared to age-matched controls, significant differences in brain hemoglobin concentrations occurred as early as eight months (Total Hb: 126±5 μM versus 108±4 μM; ctO2Hb: 86±5 μM versus 70±3 μM; for control and AD, respectively). These changes were linked to a 29% vascular volume fraction decrease and 35% vessel density reduction in the 20-month-old 3xTg-AD versus age-matched controls. Vascular reduction coincided with increased brain concentration of amyloid-β protein, vascular endothelial growth factor (VEGF), and endothelial nitric oxide synthase (eNOS) at eight and 20 months compared to the three-month baseline. Our results suggest that amyloid-β blocks the normally reparative effects of upregulated VEGF and eNOS, and may accelerate in vivo vascular pathophysiology in AD.
PLOS ONE | 2014
Kristoffer Myczek; Stephen T. Yeung; Nicholas A. Castello; David Baglietto-Vargas; Frank M. LaFerla
Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimers, Parkinsons, and Huntingtons disease) and brain traumas (stroke, epilepsy, and traumatic brain injury). One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DTA mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery.