Kim N. Green
University of California, Irvine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kim N. Green.
Nature Reviews Neuroscience | 2007
Frank M. LaFerla; Kim N. Green; Salvatore Oddo
The primal role that the amyloid-β (Aβ) peptide has in the development of Alzheimers disease is now almost universally accepted. It is also well recognized that Aβ exists in multiple assembly states, which have different physiological or pathophysiological effects. Although the classical view is that Aβ is deposited extracellularly, emerging evidence from transgenic mice and human patients indicates that this peptide can also accumulate intraneuronally, which may contribute to disease progression.
Neuron | 2005
Lauren M. Billings; Salvatore Oddo; Kim N. Green; James L. McGaugh; Frank M. LaFerla
Progressive memory loss and cognitive dysfunction are the hallmark clinical features of Alzheimers disease (AD). Identifying the molecular triggers for the onset of AD-related cognitive decline presently requires the use of suitable animal models, such as the 3xTg-AD mice, which develop both amyloid and tangle pathology. Here, we characterize the onset of learning and memory deficits in this model. We report that 2-month-old, prepathologic mice are cognitively unimpaired. The earliest cognitive impairment manifests at 4 months as a deficit in long-term retention and correlates with the accumulation of intraneuronal Abeta in the hippocampus and amygdala. Plaque or tangle pathology is not apparent at this age, suggesting that they contribute to cognitive dysfunction at later time points. Clearance of the intraneuronal Abeta pathology by immunotherapy rescues the early cognitive deficits on a hippocampal-dependent task. Reemergence of the Abeta pathology again leads to cognitive deficits. This study strongly implicates intraneuronal Abeta in the onset of cognitive dysfunction.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mathew Blurton-Jones; Masashi Kitazawa; Hilda Martinez-Coria; Nicholas A. Castello; Franz-Josef Müller; Jeanne F. Loring; Tritia R. Yamasaki; Wayne W. Poon; Kim N. Green; Frank M. LaFerla
Neural stem cell (NSC) transplantation represents an unexplored approach for treating neurodegenerative disorders associated with cognitive decline such as Alzheimer disease (AD). Here, we used aged triple transgenic mice (3xTg-AD) that express pathogenic forms of amyloid precursor protein, presenilin, and tau to investigate the effect of neural stem cell transplantation on AD-related neuropathology and cognitive dysfunction. Interestingly, despite widespread and established Aß plaque and neurofibrillary tangle pathology, hippocampal neural stem cell transplantation rescues the spatial learning and memory deficits in aged 3xTg-AD mice. Remarkably, cognitive function is improved without altering Aß or tau pathology. Instead, the mechanism underlying the improved cognition involves a robust enhancement of hippocampal synaptic density, mediated by brain-derived neurotrophic factor (BDNF). Gain-of-function studies show that recombinant BDNF mimics the beneficial effects of NSC transplantation. Furthermore, loss-of-function studies show that depletion of NSC-derived BDNF fails to improve cognition or restore hippocampal synaptic density. Taken together, our findings demonstrate that neural stem cells can ameliorate complex behavioral deficits associated with widespread Alzheimer disease pathology via BDNF.
The Journal of Neuroscience | 2005
Masashi Kitazawa; Salvatore Oddo; Tritia R. Yamasaki; Kim N. Green; Frank M. LaFerla
Inflammation is a critical component of the pathogenesis of Alzheimers disease (AD). Although not an initiator of this disorder, inflammation nonetheless plays a pivotal role as a driving force that can modulate the neuropathology. Here, we characterized the time course of microglia activation in the brains of a transgenic model of AD (3xTg-AD) and discerned its relationship to the plaque and tangle pathology. We find that microglia became activated in a progressive and age-dependent manner, and this activation correlated with the onset of fibrillar amyloidβ-peptide plaque accumulation and tau hyperphosphorylation. To determine whether microglial activation can exacerbate the pathology, we exposed young 3xTg-AD mice to lipopolysaccharide (LPS), a known inducer of CNS inflammation. Although amyloid precursor protein processing appeared unaffected, we find that LPS significantly induced tau hyperphosphorylation at specific sites that were mediated by the activation of cyclin-dependent kinase 5 (cdk5) through increased formation of the p25 fragment. We further show that administration of roscovitine, a selective and potent inhibitor of cdk5, markedly blocked the LPS-induced tau phosphorylation in the hippocampus. Therefore, this study clearly demonstrates that microglial activation exacerbates key neuropathological features such as tangle formation.
The Journal of Neuroscience | 2006
Kim N. Green; Lauren M. Billings; Benno Roozendaal; James L. McGaugh; Frank M. LaFerla
Various environmental and genetic factors influence the onset and progression of Alzheimer’s disease (AD). Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, which controls circulating levels of glucocorticoid hormones, occurs early in AD, resulting in increased cortisol levels. Disturbances of the HPA axis have been associated with memory impairments and may contribute to the cognitive decline that occurs in AD, although it is unknown whether such effects involve modulation of the amyloid β-peptide (Aβ) and tau. Using in vitro and in vivo experiments, we report that stress-level glucocorticoid administration increases Aβ formation by increasing steady-state levels of amyloid precursor protein (APP) and β-APP cleaving enzyme. Additionally, glucocorticoids augment tau accumulation, indicating that this hormone also accelerates the development of neurofibrillary tangles. These findings suggest that high levels of glucocorticoids, found in AD, are not merely a consequence of the disease process but rather play a central role in the development and progression of AD.
Neuron | 2006
Antonella Caccamo; Salvatore Oddo; Lauren M. Billings; Kim N. Green; Hilda Martinez-Coria; Abraham Fisher; Frank M. LaFerla
We investigated the therapeutic efficacy of the selective M1 muscarinic agonist AF267B in the 3xTg-AD model of Alzheimer disease. AF267B administration rescued the cognitive deficits in a spatial task but not contextual fear conditioning. The effect of AF267B on cognition predicted the neuropathological outcome, as both the Abeta and tau pathologies were reduced in the hippocampus and cortex, but not in the amygdala. The mechanism underlying the effect on the Abeta pathology was caused by the selective activation of ADAM17, thereby shifting APP processing toward the nonamyloidogenic pathway, whereas the reduction in tau pathology is mediated by decreased GSK3beta activity. We further demonstrate that administration of dicyclomine, an M1 antagonist, exacerbates the Abeta and tau pathologies. In conclusion, AF267B represents a peripherally administered low molecular weight compound to attenuate the major hallmarks of AD and to reverse deficits in cognition. Therefore, selective M1 agonists may be efficacious for the treatment of AD.
The Journal of Neuroscience | 2007
Kim N. Green; Hilda Martinez-Coria; Hasan Khashwji; Eileen Hall; Karin Yurko-Mauro; Lorie Ellis; Frank M. LaFerla
The underlying cause of sporadic Alzheimer disease (AD) is unknown, but a number of environmental and genetic factors are likely to be involved. One environmental factor that is increasingly being recognized as contributing to brain aging is diet, which has evolved markedly over modern history. Here we show that dietary supplementation with docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid, in the 3xTg-AD mouse model of AD reduced the intraneuronal accumulation of both amyloid-β (Aβ) and tau. In contrast, combining DHA with n-6 fatty acids, either arachidonic acid or docosapentaenoic acid (DPAn-6), diminished the efficacy of DHA over a 12 month period. Here we report the novel finding that the mechanism accounting for the reduction in soluble Aβ was attributable to a decrease in steady-state levels of presenilin 1, and not to altered processing of the amyloid precursor protein by either the α- or β-secretase. Furthermore, the presence of DPAn-6 in the diet reduced levels of early-stage phospho-tau epitopes, which correlated with a reduction in phosphorylated c-Jun N-terminal kinase, a putative tau kinase. Collectively, these results suggest that DHA and DPAn-6 supplementations could be a beneficial natural therapy for AD.
Journal of Cell Biology | 2009
Leslie M. Thompson; Charity T. Aiken; Linda S. Kaltenbach; Namita Agrawal; Ali Khoshnan; Marta Martinez-Vincente; Montserrat Arrasate; Jacqueline Gire O'Rourke; Hasan Khashwji; Tamas Lukacsovich; Ya Zhen Zhu; Alice L. Lau; Ashish C. Massey; Michael R. Hayden; Scott O. Zeitlin; Steven Finkbeiner; Kim N. Green; Frank M. LaFerla; Gillian P. Bates; Lan Huang; Paul H. Patterson; Donald C. Lo; Ana Maria Cuervo; J. Lawrence Marsh; Joan S. Steffan
The protein mutated in Huntingtons disease is phosphorylated by the inflammatory kinase IKK, which promotes other post-translational modifications, and protein degradation.
The Journal of Neuroscience | 2008
Kim N. Green; Joan S. Steffan; Hilda Martinez-Coria; Xuemin Sun; Steven S. Schreiber; Leslie M. Thompson; Frank M. LaFerla
Memory loss is the signature feature of Alzheimers disease, and therapies that prevent or delay its onset are urgently needed. Effective preventive strategies likely offer the greatest and most widespread benefits. Histone deacetylase (HDAC) inhibitors increase histone acetylation and enhance memory and synaptic plasticity. We evaluated the efficacy of nicotinamide, a competitive inhibitor of the sirtuins or class III NAD+-dependent HDACs in 3xTg-AD mice, and found that it restored cognitive deficits associated with pathology. Nicotinamide selectively reduces a specific phospho-species of tau (Thr231) that is associated with microtubule depolymerization, in a manner similar to inhibition of SirT1. Nicotinamide also dramatically increased acetylated α-tubulin, a primary substrate of SirT2, and MAP2c, both of which are linked to increased microtubule stability. Reduced phosphoThr231-tau was related to a reduction of monoubiquitin-conjugated tau, suggesting that this posttranslationally modified form of tau may be rapidly degraded. Overexpression of a Thr231-phospho-mimic tau in vitro increased clearance and decreased accumulation of tau compared with wild-type tau. These preclinical findings suggest that oral nicotinamide may represent a safe treatment for AD and other tauopathies, and that phosphorylation of tau at Thr231 may regulate tau stability.
Neuron | 2008
Kim N. Green; Frank M. LaFerla
Recent developments point to a critical role for calcium dysregulation in the pathogenesis of Alzheimers disease. A novel calcium-conducting channel called CALHM1 is genetically linked to the disorder and modulates Abeta production. Calcium homeostasis has also been shown to be perturbed in dendritic spines adjacent to amyloid plaques. Finally, new studies have elucidated the role by which presenilins modulate calcium signaling, including effects on SERCA2b and gating of the IP(3) receptor, and lead to Abeta production.