Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas A. Kamenos is active.

Publication


Featured researches published by Nicholas A. Kamenos.


Scientific Reports | 2015

Self-recognition in corals facilitates deep-sea habitat engineering

Sebastian Hennige; Cheryl L. Morrison; Armin Form; Janina Büscher; Nicholas A. Kamenos; J. M. Roberts

The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.


Ecology and Evolution | 2014

The future of the northeast Atlantic benthic flora in a high CO2 world

Juliet Brodie; Christopher Williamson; Dan Smale; Nicholas A. Kamenos; Rui Santos; Michael Cunliffe; Michael Steinke; Chris Yesson; Kathryn M. Anderson; Valentina Asnaghi; Colin Brownlee; Heidi L. Burdett; Michael T. Burrows; Sinéad Collins; Penelope J. C. Donohue; Ben P. Harvey; Andrew Foggo; Fanny Noisette; Joana Nunes; Federica Ragazzola; John A. Raven; Daniela N. Schmidt; David J. Suggett; Mirta Teichberg; Jason M. Hall-Spencer

Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.


Journal of Phycology | 2015

Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.

Sophie J. McCoy; Nicholas A. Kamenos

Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high‐Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community‐scale and long‐term experiments in stress response.


Global Change Biology | 2013

Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification

Nicholas A. Kamenos; Heidi L. Burdett; Elena Aloisio; Helen S. Findlay; Sophie Martin; Charlotte Longbone; Jonathan Dunn; Stephen Widdicombe; Piero Calosi

Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is now being observed to be more variable than previously thought. To underpin more robust projections of future OA impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing to the carbon cycle. Red coralline marine algae were exposed for 80 days to one of three pH treatments: (i) current pH (control); (ii) low pH (7.7) representing OA change; and (iii) an abrupt drop to low pH (7.7) representing the higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We demonstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2 enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to low pH occurred at a fast rate we detected, using Raman spectroscopy, weaknesses in the calcite skeleton, with evidence of dissolution and molecular positional disorder. This suggests that, while coralline algae will continue to calcify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate, rather than magnitude, at which pCO2 enrichment occurs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

North Atlantic summers have warmed more than winters since 1353, and the response of marine zooplankton

Nicholas A. Kamenos

Modeling and measurements show that Atlantic marine temperatures are rising; however, the low temporal resolution of models and restricted spatial resolution of measurements (i) mask regional details critical for determining the rate and extent of climate variability, and (ii) prevent robust determination of climatic impacts on marine ecosystems. To address both issues for the North East Atlantic, a fortnightly resolution marine climate record from 1353–2006 was constructed for shallow inshore waters and compared to changes in marine zooplankton abundance. For the first time summer marine temperatures are shown to have increased nearly twice as much as winter temperatures since 1353. Additional climatic instability began in 1700 characterized by ∼5–65 year climate oscillations that appear to be a recent phenomenon. Enhanced summer-specific warming reduced the abundance of the copepod Calanus finmarchicus, a key food item of cod, and led to significantly lower projected abundances by 2040 than at present. The faster increase of summer marine temperatures has implications for climate projections and affects abundance, and thus biomass, near the base of the marine food web with potentially significant feedback effects for marine food security.


Journal of Phycology | 2010

Temperature controls on coralline algal skeletal growth.

Nicholas A. Kamenos; Alan Law

Many marine and terrestrial organisms lay down regular growth bands. In some species (e.g., trees), control of growth band geometry is related to environmental conditions. Coralline algae are long‐lived marine plants with a global distribution that lay down regular calcitic growth bands composed of more‐ and less‐extensively calcified cells. Little is known about environmental and organism controls on their growth. In this investigation, coralline algae (Lithothamnion glaciale Kjellm.) were grown at 8, 11, and 15°C, and temperature controls on algal growth were considered. Calcite density within less‐extensively calcified cells in L. glaciale was negatively correlated to summer temperature. No relationships were observed between temperature and calcite density in more‐extensively calcified cells or growth‐band width itself. Additionally, temperature controls on growth in three L. glaciale thalli over the last 50u2003years were considered. Temperature was negatively related to calcite density in more‐ and less‐extensively calcified cells but showed no consistent relationship with band width.


Scientific Reports | 2015

Ocean acidification impacts mussel control on biomineralisation

Susan C. Fitzer; Vernon R. Phoenix; Maggie Cusack; Nicholas A. Kamenos

Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000u2005µatm pCO2). After six months of incubation at 750u2005µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000u2005µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.


Journal of Structural Biology | 2014

Ocean acidification reduces the crystallographic control in juvenile mussel shells.

Susan C. Fitzer; Maggie Cusack; Vernon R. Phoenix; Nicholas A. Kamenos

Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification.


Marine Biology Research | 2012

The effect of chronic and acute low pH on the intracellular DMSP production and epithelial cell morphology of red coralline algae

Heidi L. Burdett; Elena Aloisio; Piero Calosi; Helen S. Findlay; Stephen Widdicombe; Angela D. Hatton; Nicholas A. Kamenos

Abstract The release of dimethylsulphoniopropionate (DMSP) by marine algae has major impacts on the global sulphur cycle and may influence local climate through the formation of dimethylsulphide (DMS). However, the effect of global change on DMSP/DMS (DMS(P)) production by algae is not well understood. This study examined the effect of low pH on DMS(P) production and epithelial cell morphology of the free-living red coralline alga Lithothamnion glaciale. Three pH treatments were used in the 80-day experiment: (1) current pH level (8.18, control), (2) low, chronic pH representing a 2100 ocean acidification (OA) scenario (7.70) and (3) low, acute pH (7.75, with a 3-day spike to 6.47), representing acute variable conditions that might be associated with leaks from carbon capture and storage infrastructure, at CO2 vent sites or in areas of upwelling. DMS(P) production was not significantly enhanced under low, stable pH conditions, indicating that red coralline algae may have some resilience to OA. However, intracellular and water column DMS(P) concentrations were significantly higher than the control when pH was acutely spiked. Cracks were observed between the cell walls of the algal skeleton in both low pH treatments. It is proposed that this structural change may cause membrane damage that allows DMS(P) to leak from the cells into the water column, with subsequent implications for the cycling of DMS(P) in coralline algae habitats.


Proceedings of the Royal Society B: Biological Sciences | 2015

Hidden impacts of ocean acidification to live and dead coral framework.

Sebastian Hennige; Laura C. Wicks; Nicholas A. Kamenos; Gabriela Perna; Helen S. Findlay; J. M. Roberts

Cold-water corals, such as Lophelia pertusa, are key habitat-forming organisms found throughout the worlds oceans to 3000 m deep. The complex three-dimensional framework made by these vulnerable marine ecosystems support high biodiversity and commercially important species. Given their importance, a key question is how both the living and the dead framework will fare under projected climate change. Here, we demonstrate that over 12 months L. pertusa can physiologically acclimate to increased CO2, showing sustained net calcification. However, their new skeletal structure changes and exhibits decreased crystallographic and molecular-scale bonding organization. Although physiological acclimatization was evident, we also demonstrate that there is a negative correlation between increasing CO2 levels and breaking strength of exposed framework (approx. 20–30% weaker after 12 months), meaning the exposed bases of reefs will be less effective ‘load-bearers’, and will become more susceptible to bioerosion and mechanical damage by 2100.

Collaboration


Dive into the Nicholas A. Kamenos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela D. Hatton

Scottish Association for Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen S. Findlay

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

P. Geoffrey Moore

University Marine Biological Station Millport

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge