Susan C. Fitzer
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susan C. Fitzer.
Invertebrate Reproduction & Development | 2011
Gary S. Caldwell; Susan C. Fitzer; Georgia Pickavance; Elizabeth Turnbull; Matthew G. Bentley
Ocean acidification as a result of an enriched carbon dioxide atmosphere threatens ecosystem health and marine biodiversity. The reproductive and early life-stages of animals have been suggested as among the most vulnerable to ocean acidification perturbations. To explore this theory further we applied computer assisted sperm analysis (CASA) to investigate the combined effect of pH (8.06–7.67) and temperature (14–20°C) on sea urchin sperm motility. Previous studies have either observed no or inhibitory impacts of ocean acidification on sperm swimming. Surprisingly, we observed a substantial improvement in swimming speed at reduced seawater pH compared with performance at current pH levels. This suggests that current levels may be suboptimal for maximal sperm swimming speeds. Temperature was found to affect swimming speed but not percent motility. Our observations suggest that swimming speed may be improved as seawater pH approaches conditions resembling the paleo-ocean. However, this does not necessarily equate to an improvement in reproductive fitness due to a trade-off between sperm-swimming speed and longevity. This indicates that ocean acidification may benefit certain aspects of the reproductive biology of some marine animals.
Scientific Reports | 2015
Susan C. Fitzer; Vernon R. Phoenix; Maggie Cusack; Nicholas A. Kamenos
Ocean acidification is altering the oceanic carbonate saturation state and threatening the survival of marine calcifying organisms. Production of their calcium carbonate exoskeletons is dependent not only on the environmental seawater carbonate chemistry but also the ability to produce biominerals through proteins. We present shell growth and structural responses by the economically important marine calcifier Mytilus edulis to ocean acidification scenarios (380, 550, 750, 1000 µatm pCO2). After six months of incubation at 750 µatm pCO2, reduced carbonic anhydrase protein activity and shell growth occurs in M. edulis. Beyond that, at 1000 µatm pCO2, biomineralisation continued but with compensated metabolism of proteins and increased calcite growth. Mussel growth occurs at a cost to the structural integrity of the shell due to structural disorientation of calcite crystals. This loss of structural integrity could impact mussel shell strength and reduce protection from predators and changing environments.
Journal of Structural Biology | 2014
Susan C. Fitzer; Maggie Cusack; Vernon R. Phoenix; Nicholas A. Kamenos
Global climate change threatens the oceans as anthropogenic carbon dioxide causes ocean acidification and reduced carbonate saturation. Future projections indicate under saturation of aragonite, and potentially calcite, in the oceans by 2100. Calcifying organisms are those most at risk from such ocean acidification, as carbonate is vital in the biomineralisation of their calcium carbonate protective shells. This study highlights the importance of multi-generational studies to investigate how marine organisms can potentially adapt to future projected global climate change. Mytilus edulis is an economically important marine calcifier vulnerable to decreasing carbonate saturation as their shells comprise two calcium carbonate polymorphs: aragonite and calcite. M. edulis specimens were cultured under current and projected pCO2 (380, 550, 750 and 1000μatm), following 6months of experimental culture, adults produced second generation juvenile mussels. Juvenile mussel shells were examined for structural and crystallographic orientation of aragonite and calcite. At 1000μatm pCO2, juvenile mussels spawned and grown under this high pCO2 do not produce aragonite which is more vulnerable to carbonate under-saturation than calcite. Calcite and aragonite were produced at 380, 550 and 750μatm pCO2. Electron back scatter diffraction analyses reveal less constraint in crystallographic orientation with increased pCO2. Shell formation is maintained, although the nacre crystals appear corroded and crystals are not so closely layered together. The differences in ultrastructure and crystallography in shells formed by juveniles spawned from adults in high pCO2 conditions may prove instrumental in their ability to survive ocean acidification.
Journal of the Royal Society Interface | 2014
Susan C. Fitzer; Wenzhong Zhu; K. Elizabeth Tanner; Vernon R. Phoenix; Nicholas A. Kamenos; Maggie Cusack
Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Youngs modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.
PLOS ONE | 2013
Susan C. Fitzer; Gary S. Caldwell; Anthony S. Clare; Robert C. Upstill-Goddard; Matthew G. Bentley
We examined the impacts of ocean acidification and copper as co-stressors on the reproduction and population level responses of the benthic copepod Tisbe battagliai across two generations. Naupliar production, growth, and cuticle elemental composition were determined for four pH values: 8.06 (control); 7.95; 7.82; 7.67, with copper addition to concentrations equivalent to those in benthic pore waters. An additive synergistic effect was observed; the decline in naupliar production was greater with added copper at decreasing pH than for decreasing pH alone. Naupliar production modelled for the two generations revealed a negative synergistic impact between ocean acidification and environmentally relevant copper concentrations. Conversely, copper addition enhanced copepod growth, with larger copepods produced at each pH compared to the impact of pH alone. Copepod digests revealed significantly reduced cuticle concentrations of sulphur, phosphorus and calcium under decreasing pH; further, copper uptake increased to toxic levels that lead to reduced naupliar production. These data suggest that ocean acidification will enhance copper bioavailability, resulting in larger, but less fecund individuals that may have an overall detrimental outcome for copepod populations.
Scientific Reports | 2016
Susan C. Fitzer; Peter Chung; Francesco Maccherozzi; Sarnjeet S. Dhesi; Nicholas A. Kamenos; Vernon R. Phoenix; Maggie Cusack
Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 μatm pCO2) compared to present day conditions (380 μatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments.
Ecology and Evolution | 2015
Susan C. Fitzer; Liberty Vittert; Adrian Bowman; Nicholas A. Kamenos; Vernon R. Phoenix; Maggie Cusack
Abstract Ocean acidification threatens organisms that produce calcium carbonate shells by potentially generating an under‐saturated carbonate environment. Resultant reduced calcification and growth, and subsequent dissolution of exoskeletons, would raise concerns over the ability of the shell to provide protection for the marine organism under ocean acidification and increased temperatures. We examined the impact of combined ocean acidification and temperature increase on shell formation of the economically important edible mussel Mytilus edulis. Shell growth and thickness along with a shell thickness index and shape analysis were determined. The ability of M. edulis to produce a functional protective shell after 9 months of experimental culture under ocean acidification and increasing temperatures (380, 550, 750, 1000 μatm pCO 2, and 750, 1000 μatm pCO 2 + 2°C) was assessed. Mussel shells grown under ocean acidification conditions displayed significant reductions in shell aragonite thickness, shell thickness index, and changes to shell shape (750, 1000 μatm pCO 2) compared to those shells grown under ambient conditions (380 μatm pCO 2). Ocean acidification resulted in rounder, flatter mussel shells with thinner aragonite layers likely to be more vulnerable to fracture under changing environments and predation. The changes in shape presented here could present a compensatory mechanism to enhance protection against predators and changing environments under ocean acidification when mussels are unable to grow thicker shells. Here, we present the first assessment of mussel shell shape to determine implications for functional protection under ocean acidification.
Journal of Crustacean Biology | 2012
Susan C. Fitzer; John D. D. Bishop; Gary S. Caldwell; Anthony S. Clare; Robert C. Upstill-Goddard; Matthew G. Bentley
ABSTRACT We examined mating behaviour in the harpacticoid copepod Tube battagliai Volkmann-Rocco, 1972, in particular the process of delivering spermatophore seminal contents to the female urosome. Labelling using 4′6′ diamidino-2-phenylindole (DAPI) coupled with two-photon confocal laser scanning microscopy successfully visualised the spermatophore and female internal reproductive system. Sections of the female urosome were imaged to examine seminal fluid stores. The female tissues were found to auto-fluoresce as red emission under green excitation, requiring no additional tissue labelling. DAPI-labelled seminal fluid stores were identified within the female reproductive system. The details observed agreed with previous descriptions of copepod reproductive anatomy and of spermatophores. Specimens cultured under pH 8.10 and a simulated ocean acidification scenario (pH 7.67) were compared for changes in reproductive anatomy and spermatophore size and site attachment. No differences were observed in spermatophore attachment or the female reproductive system but spermatophore size was reduced significantly at pH 7.67 compared with pH 8.10. This size reduction was, however, in proportion to an overall reduction in female body size at reduced pH. Confocal microscopy is shown here to be a valuable tool to investigate detailed reproductive processes in copepods.
Ecology and Evolution | 2018
Susan C. Fitzer; Sergio A. Torres Gabarda; L. Daly; Brian Hughes; Michael Dove; Wayne A. O'Connor; Jaimie Potts; Peter Scanes; Maria Byrne
Abstract Ocean acidification is occurring globally through increasing CO 2 absorption into the oceans creating particular concern for calcifying species. In addition to ocean acidification, near shore marine habitats are exposed to the deleterious effects of runoff from acid sulfate soils which also decreases environmental pH. This coastal acidification is being exacerbated by climate change‐driven sea‐level rise and catchment‐driven flooding. In response to reduction in habitat pH by ocean and coastal acidification, mollusks are predicted to produce thinner shells of lower structural integrity and reduced mechanical properties threatening mollusk aquaculture. Here, we present the first study to examine oyster biomineralization under acid sulfate soil acidification in a region where growth of commercial bivalve species has declined in recent decades. Examination of the crystallography of the shells of the Sydney rock oyster, Saccostrea glomerata, by electron back scatter diffraction analyses revealed that the signal of environmental acidification is evident in the structure of the biomineral. Saccostrea glomerata, shows phenotypic plasticity, as evident in the disruption of crystallographic control over biomineralization in populations living in coastal acidification sites. Our results indicate that reduced sizes of these oysters for commercial sale may be due to the limited capacity of oysters to biomineralize under acidification conditions. As the impact of this catchment source acidification will continue to be exacerbated by climate change with likely effects on coastal aquaculture in many places across the globe, management strategies will be required to maintain the sustainable culture of these key resources.
Journal of Experimental Marine Biology and Ecology | 2012
Susan C. Fitzer; Gary S. Caldwell; Andrew Close; Anthony S. Clare; Robert C. Upstill-Goddard; Matthew G. Bentley