Nicholas A. Macgregor
Natural England
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas A. Macgregor.
Landscape Ecology | 2015
Jonathan W. Humphrey; Kevin Watts; Elisa Fuentes-Montemayor; Nicholas A. Macgregor; Andrew J. Peace; Kirsty J. Park
The development of ecological networks could help reverse the effects of habitat fragmentation on woodland biodiversity in temperate agricultural landscapes. However, efforts to create networks need to be underpinned by clear evidence of the relative efficacy of local (e.g. improving or expanding existing habitat patches) versus landscape-scale actions (e.g. creating new habitat or corridors in the landscape matrix). Using cluster analyses we synthesised the findings of 104 studies, published between 1990 and 2013 focusing on the responses of woodland vascular plant, vertebrate, cryptogam and invertebrate species to local and landscape variables. Species responses (richness, diversity, occurrence) were strongly influenced by patch area, patch characteristics (e.g. stand structure) and isolation (e.g. distance between habitat patches). Patch characteristics were of overriding importance for all species groups, especially cryptogams. Many studies recording significant species responses to patch characteristics did not record significant responses to patch area and vice versa, suggesting that patch area may sometimes act as a surrogate for patch characteristics (i.e. larger patches being of ‘better quality’). Ecological continuity was important for vascular plants, but assessed in only a few vertebrate and invertebrate studies. Matrix structure (e.g. presence of corridors) was important for vertebrates, but rarely assessed for other species groups. Actions to develop ecological networks should focus on enhancing the quality and/or size of existing habitat patches and reducing isolation between patches. However, given that very few studies have assessed all local and landscape variables together, further information on the relative impacts of different attributes of ecological networks in temperate agricultural landscapes is urgently needed.
Environmental Management | 2014
Sven Rannow; Nicholas A. Macgregor; Juliane Albrecht; Humphrey Q. P. Crick; Michael Förster; Stefan Heiland; Georg A. Janauer; Michael D. Morecroft; Marco Neubert; Anca Sarbu; Jadwiga Sienkiewicz
The implementation of adaptation actions in local conservation management is a new and complex task with multiple facets, influenced by factors differing from site to site. A transdisciplinary perspective is therefore required to identify and implement effective solutions. To address this, the International Conference on Managing Protected Areas under Climate Change brought together international scientists, conservation managers, and decision-makers to discuss current experiences with local adaptation of conservation management. This paper summarizes the main issues for implementing adaptation that emerged from the conference. These include a series of conclusions and recommendations on monitoring, sensitivity assessment, current and future management practices, and legal and policy aspects. A range of spatial and temporal scales must be considered in the implementation of climate-adapted management. The adaptation process must be area-specific and consider the ecosystem and the social and economic conditions within and beyond protected area boundaries. However, a strategic overview is also needed: management at each site should be informed by conservation priorities and likely impacts of climate change at regional or even wider scales. Acting across these levels will be a long and continuous process, requiring coordination with actors outside the “traditional” conservation sector. To achieve this, a range of research, communication, and policy/legal actions is required. We identify a series of important actions that need to be taken at different scales to enable managers of protected sites to adapt successfully to a changing climate.
Environmental Management | 2014
Nicholas A. Macgregor; Nikki van Dijk
Although good general principles for climate change adaptation in conservation have been developed, it is proving a challenge to translate them into more detailed recommendations for action. To improve our understanding of what adaptation might involve in practice, we investigated how the managers of conservation areas in eastern England are considering climate change. We used a written questionnaire and semi-structured interviews to collect information from managers of a range of different conservation areas. Topics investigated include the impacts of climate change perceived to be of the greatest importance; adaptation goals being set; management actions being carried out to achieve these goals; sources of information used; and perceived barriers to taking action. We identified major themes and issues that were apparent across the sites studied. Specifically, we found ways in which adaptation had been informed by past experience; different strategies relating to whether to accept or resist change; approaches for coping with more variable conditions; ways of taking a large-scale approach and managing sites as networks; some practical examples of aspects of adaptive management; and examples of the role that other sectors can play in both constraining and increasing a conservation area’s capacity to adapt. We discuss the relevance of these findings to the growing discussion in conservation about identifying adaptation pathways for different conservation areas and a potential progression from a focus on resilience and incremental change to embracing “transformation.” Though adaptation will be place-specific, we believe these findings provide useful lessons for future action in both England and other countries.
Ecology and Evolution | 2016
Kevin Watts; Elisa Fuentes-Montemayor; Nicholas A. Macgregor; Victor M. Peredo-Alvarez; Mark Ferryman; Chloe Bellamy; Nigel Brown; Kirsty J. Park
Abstract Natural experiments have been proposed as a way of complementing manipulative experiments to improve ecological understanding and guide management. There is a pressing need for evidence from such studies to inform a shift to landscape‐scale conservation, including the design of ecological networks. Although this shift has been widely embraced by conservation communities worldwide, the empirical evidence is limited and equivocal, and may be limiting effective conservation. We present principles for well‐designed natural experiments to inform landscape‐scale conservation and outline how they are being applied in the WrEN project, which is studying the effects of 160 years of woodland creation on biodiversity in UK landscapes. We describe the study areas and outline the systematic process used to select suitable historical woodland creation sites based on key site‐ and landscape‐scale variables – including size, age, and proximity to other woodland. We present the results of an analysis to explore variation in these variables across sites to test their suitability as a basis for a natural experiment. Our results confirm that this landscape satisfies the principles we have identified and provides an ideal study system for a long‐term, large‐scale natural experiment to explore how woodland biodiversity is affected by different site and landscape attributes. The WrEN sites are now being surveyed for a wide selection of species that are likely to respond differently to site‐ and landscape‐scale attributes and at different spatial and temporal scales. The results from WrEN will help develop detailed recommendations to guide landscape‐scale conservation, including the design of ecological networks. We also believe that the approach presented demonstrates the wider utility of well‐designed natural experiments to improve our understanding of ecological systems and inform policy and practice.
Ecology and Society | 2016
William M. Adams; Ian Hodge; Nicholas A. Macgregor; Lindsey C. Sandbrook
It is increasingly recognized that ecological restoration demands conservation action beyond the borders of existing protected areas. This requires the coordination of land uses and management over a larger area, usually with a range of partners, which presents novel institutional challenges for conservation planners. Interviews were undertaken with managers of a purposive sample of large-scale conservation areas in the UK. Interviews were open-ended and analyzed using standard qualitative methods. Results show a wide variety of organizations are involved in large-scale conservation projects, and that partnerships take time to create and demand resilience in the face of different organizational practices, staff turnover, and short-term funding. Successful partnerships with local communities depend on the establishment of trust and the availability of external funds to support conservation land uses. We conclude that there is no single institutional model for large-scale conservation: success depends on finding institutional strategies that secure long-term conservation outcomes, and ensure that conservation gains are not reversed when funding runs out, private owners change priorities, or land changes hands.
Nature Climate Change | 2018
Andrew J. Suggitt; Robert J. Wilson; Nick J. B. Isaac; Colin M. Beale; Alistair G. Auffret; Tom A. August; Jonathan Bennie; Humphrey Q. P. Crick; Simon J. Duffield; Richard Fox; John J. Hopkins; Nicholas A. Macgregor; Michael D. Morecroft; Kevin J. Walker; Ilya M. D. Maclean
Protecting biodiversity against the impacts of climate change requires effective conservation strategies that safeguard species at risk of extinction1. Microrefugia allowed populations to survive adverse climatic conditions in the past2,3, but their potential to reduce extinction risk from anthropogenic warming is poorly understood3–5, hindering our capacity to develop robust in situ measures to adapt conservation to climate change6. Here, we show that microclimatic heterogeneity has strongly buffered species against regional extirpations linked to recent climate change. Using more than five million distribution records for 430 climate-threatened and range-declining species, population losses across England are found to be reduced in areas where topography generated greater variation in the microclimate. The buffering effect of topographic microclimates was strongest for those species adversely affected by warming and in areas that experienced the highest levels of warming: in such conditions, extirpation risk was reduced by 22% for plants and by 9% for insects. Our results indicate the critical role of topographic variation in creating microrefugia, and provide empirical evidence that microclimatic heterogeneity can substantially reduce extinction risk from climate change.Topographic variations result in microclimatic heterogeneity that can substantially reduce extinction risk from climate change, according to a study of 430 climate-threatened and range-declining species in England.
Conservation Biology | 2018
Robin C. Whytock; Elisa Fuentes-Montemayor; Kevin Watts; Patanjaly Barbosa De Andrade; Rory T. Whytock; Paul French; Nicholas A. Macgregor; Kirsty J. Park
Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.
Conservation Biology | 2017
Robin C. Whytock; Elisa Fuentes-Montemayor; Kevin Watts; Andrade Patanjaly Barbosa De; Rory T. Whytock; Paul French; Nicholas A. Macgregor; Kirsty J. Park
Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.
Archive | 2011
Nicholas A. Macgregor; Caroline E. Cowan
Agricultural land covers over 70% of England and provides a wide range of important benefits to the society. These benefits are vulnerable to both the direct and indirect effects of climate change. Successful adaptation by the agriculture and land management sector is therefore vital, and this adaptation must be sustainable.
Vegetation History and Archaeobotany | 2015
Andrew J. Suggitt; Richard T. Jones; Chris Caseldine; Brian Huntley; John R. Stewart; Stephen J. Brooks; Eleanor J. Brown; David Fletcher; Phillipa K. Gillingham; Jonathan G. Larwood; Nicholas A. Macgregor; Barbara Silva; Zoë Thomas; Robert J. Wilson; Ilya M. D. Maclean
We welcome the response of Tooley (2015) to our article describing a new meta-database of Holocene sediment cores for England. In our article we describe the online publication of this meta-database, arising from systematic meta-search. We define its scope and the meta-data it contains, before providing the data themselves (in the Electronic Supplementary Material online). We note that Prof. Tooley describes the idea of such a database as important and valuable, and we welcome the constructive approach he adopts throughout his article. Tooley highlights that the meta-database can be enhanced by the inclusion of a number of studies of the Coastal Lowlands, highlighting gaps in the Lancashire and Hartlepool Bay areas in particular. While it is undoubtedly true that these studies were omitted, they tend to document boreholes which have shown Holocene sediments, rather than boreholes subject to the analysis of least one palaeoecological proxy, as per our inclusion criterion. For example, based on the information M.J. Tooley provides, we estimate that 17 such analyses from Lancashire would have satisfied this criterion. It is certainly clear that these omissions are genuine, and we would agree that they add to the pool of sites already described in the meta-database. Because of the constraints of systematic search however, it could also be the case that omissions exist outside these areas, and in the original text we highlighted that: ‘‘the resulting meta-database is by no means exhaustive and we would expect further additions to be made in due course’’. We therefore welcome this addition and would similarly do so for others highlighted to the author team. We would however contest the suggestion that ‘much’ of the published data have been overlooked from improper searching. Tooley implores a greater level of focus at the county level; we would only encourage consideration of the attendant effects of his proposed strategy on search volume (the modern counties of England would generate an 84 fold increase to our list of