Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas A. Paul is active.

Publication


Featured researches published by Nicholas A. Paul.


Bioresource Technology | 2014

Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae

Nicolas Neveux; Alexander K. L. Yuen; Christopher Jazrawi; Marie Magnusson; Brian S. Haynes; A.F. Masters; Alejandro Montoya; Nicholas A. Paul; Thomas Maschmeyer; R. de Nys

Six species of marine and freshwater green macroalgae were cultivated in outdoor tanks and subsequently converted to biocrude through hydrothermal liquefaction (HTL) in a batch reactor. The influence of the biochemical composition of biomass on biocrude yield and composition was assessed. The freshwater macroalgae Oedogonium afforded the highest biocrude yield of all six species at 26.2%, dry weight (dw). Derbesia (19.7%dw) produced the highest biocrude yield for the marine species followed by Ulva (18.7%dw). In contrast to significantly different yields across species, the biocrudes elemental profiles were remarkably similar with higher heating values of 33-34MJkg(-1). Biocrude productivity was highest for marine Derbesia (2.4gm(-2)d(-1)) and Ulva (2.1gm(-2)d(-1)), and for freshwater Oedogonium (1.3gm(-2)d(-1)). These species were therefore identified as suitable feedstocks for scale-up and further HTL studies based on biocrude productivity, as a function of biomass productivity and the yield of biomass conversion to biocrude.


Gcb Bioenergy | 2012

Total lipid and fatty acid composition of seaweeds for the selection of species for oil‐based biofuel and bioproducts

Björn J. Gosch; Marie Magnusson; Nicholas A. Paul; Rocky de Nys

We investigated the potential of seaweeds as feedstock for oil‐based products, and our results support macroalgae (seaweeds) as a biomass source for oil‐based bioproducts including biodiesel. Not only do several seaweeds have high total lipid content above 10% dry weight, but in the brown alga Spatoglossum macrodontum 50% of these lipids are in the form of extractable fatty acids. S. macrodontum had the highest fatty acid content (57.40 mg g−1 dw) and a fatty acid profile rich in saturated fatty acids with a high content of C18:1, which is suitable as a biofuel feedstock. Similarly, the green seaweed Derbesia tenuissima has high levels of fatty acids (39.58 mg g−1 dw), however, with a high proportion of PUFA (n‐3) (31% of total lipid) which are suitable as nutraceuticals or fish oil replacements. Across all species of algae the critical parameter of fatty acid content (measured as fatty acid methyl esters, FAME) was positively correlated (R2 = 0.67) with total lipid content. However, the proportion of fatty acids to total lipid decreased markedly with total lipid content, generally between 30% and 50%, making it an inaccurate measure of the potential to identify seaweeds suitable for oil‐based bioproducts. Finally, we quantified within species variation of fatty acids across locations and sampling periods supporting either environmental effects on quantitative fatty acid profiles, or genotypes with specific quantitative fatty acid profiles, thereby opening the possibility to optimize the fatty acid content and quality for oil production through specific culture conditions and selective breeding.


Biofouling | 2009

Biomimetic characterisation of key surface parameters for the development of fouling resistant materials.

Andrew J. Scardino; D. Hudleston; Zhongxiao Peng; Nicholas A. Paul; R. de Nys

Material science provides a direct route to developing a new generation of non-toxic, surface effect-based antifouling technologies with applications ranging from biomedical science to marine transport. The surface topography of materials directly affects fouling resistance and fouling removal, the two key mechanisms for antifouling technologies. However, the field is hindered by the lack of quantified surface characteristics to guide the development of new antifouling materials. Using a biomimetic approach, key surface parameters are defined and quantified and correlated with fouling resistance and fouling removal from the shells of marine molluscs. Laser scanning confocal microscopy was used to acquire images for quantitative surface characterisation using three-dimensional surface parameters, and field assays correlated these with fouling resistance and fouling release. Principle component analysis produced a major component (explaining 54% of total variation between shell surfaces) that correlated with fouling resistance. The five surface parameters positively correlated to increased fouling resistance were, in order of importance, low fractal dimension, high skewness of both the roughness and waviness profiles, higher values of isotropy and lower values of mean surface roughness. The second component (accounting for 20% of variation between shells) positively correlated to fouling release, for which higher values of mean waviness almost exclusively dictated this relationship. This study provides quantified surface parameters to guide the development of new materials with surface properties that confer fouling resistance and release.


Gcb Bioenergy | 2012

Algal biochar: effects and applications

Michael I. Bird; Christopher M. Wurster; Pedro H. de Paula Silva; Nicholas A. Paul; Rocky de Nys

Algae represent a promising target for the generation of bioenergy through slow pyrolysis, leading to the production of biochar. This study reports experiments conducted on the production of freshwater and saltwater macroalgal biochar in pilot‐scale quantities, the physical and chemical characteristics of the biochars, and their impact on plant growth. The biochars are low in carbon (C) content, surface area and cation exchange capacity, while being high in ash and nutrients. Trace element analysis demonstrates that macroalgal biochar produced from unpolluted water does not contain toxic trace elements in excess of levels mandated for unrestricted use as a biosolids amendment to soils. Pot trials conducted using a C and nutrient‐poor soil, without and with additional fertilizer, demonstrate dramatic increases between 15 and 32 times, respectively, in plant growth rate for biochar treatments compared with the no biochar controls, with additional smaller increases when fertilizer was added. Pot trials conducted using a relatively fertile agricultural soil showed smaller but significant impacts of biochar amendment over the controls.


PLOS ONE | 2013

Selecting reliable and robust freshwater macroalgae for biomass applications.

Rebecca J. Lawton; Rocky de Nys; Nicholas A. Paul

Intensive cultivation of freshwater macroalgae is likely to increase with the development of an algal biofuels industry and algal bioremediation. However, target freshwater macroalgae species suitable for large-scale intensive cultivation have not yet been identified. Therefore, as a first step to identifying target species, we compared the productivity, growth and biochemical composition of three species representative of key freshwater macroalgae genera across a range of cultivation conditions. We then selected a primary target species and assessed its competitive ability against other species over a range of stocking densities. Oedogonium had the highest productivity (8.0 g ash free dry weight m−2 day−1), lowest ash content (3–8%), lowest water content (fresh weigh: dry weight ratio of 3.4), highest carbon content (45%) and highest bioenergy potential (higher heating value 20 MJ/kg) compared to Cladophora and Spirogyra. The higher productivity of Oedogonium relative to Cladophora and Spirogyra was consistent when algae were cultured with and without the addition of CO2 across three aeration treatments. Therefore, Oedogonium was selected as our primary target species. The competitive ability of Oedogonium was assessed by growing it in bi-cultures and polycultures with Cladophora and Spirogyra over a range of stocking densities. Cultures were initially stocked with equal proportions of each species, but after three weeks of growth the proportion of Oedogonium had increased to at least 96% (±7 S.E.) in Oedogonium-Spirogyra bi-cultures, 86% (±16 S.E.) in Oedogonium-Cladophora bi-cultures and 82% (±18 S.E.) in polycultures. The high productivity, bioenergy potential and competitive dominance of Oedogonium make this species an ideal freshwater macroalgal target for large-scale production and a valuable biomass source for bioenergy applications. These results demonstrate that freshwater macroalgae are thus far an under-utilised feedstock with much potential for biomass applications.


Ecology | 2008

Sex and life-history stage alter herbivore responses to a chemically defended red alga

Adriana Vergés; Nicholas A. Paul; Peter D. Steinberg

Intraspecific variation in resistance to herbivory among genders and life-history phases of primary producers can significantly alter the ecological and evolutionary consequences of plant-herbivore interactions. Seaweeds (macroalgae) with complex life histories have multiple distinct phases with associated variation in traits that can potentially lead to differences in resistance to consumers and provide a unique system in which to simultaneously test the effects of sex and life-history stage on herbivory. We tested the susceptibility to grazing of the three life-history stages and separate sexes of the chemically defended red alga Asparagopsis armata against the sea hare Aplysia parvula, and we related this to the plant quality traits of different stages and genders. Differences in nutrient content and halogenated secondary metabolites between life-history phases were highly sex dependent. Male gametophytes had a low concentration of secondary metabolites and the highest nutrient content. The highest secondary metabolite content was found within the female gametophyte, in the wall of the reproductive structures (cystocarps) that contain the microscopic carposporophyte phase. Feeding choices by A. parvula were consistent with differences in algal quality and defense and resulted in the haploid male gametophytes being the most preferred food type. The diploid carposporophyte found inside the chemically rich cystocarps was the least consumed life-history stage. Selective herbivory of male gametophytes by A. parvula is consistent with an observed shift in gametophyte sex ratio in the field from unity at the beginning of the reproductive season to female bias at the end. The variation in susceptibility to herbivory found between sex and life-history stages of A. armata represents the first example of sex-biased consumption in seaweeds and may contribute to the maintenance of complex life histories such as those found in red algae.


PLOS ONE | 2013

Algal Bioremediation of Waste Waters from Land-Based Aquaculture Using Ulva: Selecting Target Species and Strains

Rebecca J. Lawton; Leonardo Mata; Rocky de Nys; Nicholas A. Paul

The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day−1 respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2–20.4% day−1) and Sydney strains had the lowest growth rates (2.5–8.3% day−1). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for bioremediation activities at land-based aquaculture facilities in Eastern Australia.


PLOS ONE | 2012

Sustainable Sources of Biomass for Bioremediation of Heavy Metals in Waste Water Derived from Coal-Fired Power Generation

Richard J. Saunders; Nicholas A. Paul; Yi Hu; Rocky de Nys

Biosorption of heavy metals using dried algal biomass has been extensively described but rarely implemented. We contend this is because available algal biomass is a valuable product with a ready market. Therefore, we considered an alternative and practical approach to algal bioremediation in which algae were cultured directly in the waste water stream. We cultured three species of algae with and without nutrient addition in water that was contaminated with heavy metals from an Ash Dam associated with coal-fired power generation and tested metal uptake and bioremediation potential. All species achieved high concentrations of heavy metals (to 8% dry mass). Two key elements, V and As, reached concentrations in the biomass of 1543 mg.kg−1 DW and 137 mg.kg−1 DW. Growth rates were reduced by more than half in neat Ash Dam water than when nutrients were supplied in excess. Growth rate and bioconcentration were positively correlated for most elements, but some elements (e.g. Cd, Zn) were concentrated more when growth rates were lower, indicating the potential to tailor bioremediation depending on the pollutant. The cosmopolitan nature of the macroalgae studied, and their ability to grow and concentrate a suite of heavy metals from industrial wastes, highlights a clear benefit in the practical application of waste water bioremediation.


PLOS ONE | 2013

The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.

David A. Roberts; Rocky de Nys; Nicholas A. Paul

The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m-2 d-1 to a maximum of 22.5 g DW m-2 d-1. The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks.


Gcb Bioenergy | 2015

Comparing the potential production and value of high-energy liquid fuels and protein from marine and freshwater macroalgae

Nicolas Neveux; Marie Magnusson; Thomas Maschmeyer; Rocky de Nys; Nicholas A. Paul

The biomass production and biochemical properties of marine and freshwater species of green macroalgae (multicellular algae), cultivated in outdoor conditions, were evaluated to assess the potential conversion into high‐energy liquid biofuels, specifically biocrude and biodiesel and the value of these products. Biomass productivities were typically two times higher for marine macroalgae (8.5–11.9 g m−2 d−1, dry weight) than for freshwater macroalgae (3.4–5.1 g m−2 d−1, dry weight). The biochemical compositions of the species were also distinct, with higher ash content (25.5–36.6%) in marine macroalgae and higher calorific value (15.8–16.4 MJ kg−1) in freshwater macroalgae. Lipid content was highest for freshwater Oedogonium and marine Derbesia. Lipids are a critical organic component for biocrude production by hydrothermal liquefaction (HTL) and the theoretical biocrude yield was therefore highest for Oedogonium (17.7%, dry weight) and Derbesia (16.2%, dry weight). Theoretical biocrude yields were also higher than biodiesel yields for all species due to the conversion of the whole organic component of biomass, including the predominant carbohydrate fraction. However, all marine species had higher biomass productivities and therefore had higher projected biocrude productivities than freshwater species, up to 7.1 t of biocrude ha−1 yr−1 for Derbesia. The projected value of the six macroalgae was increased by 45–77% (up to US

Collaboration


Dive into the Nicholas A. Paul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter D. Steinberg

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge