Nicholas C. Grassly
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas C. Grassly.
Science | 2009
Christophe Fraser; Christl A. Donnelly; Simon Cauchemez; William P. Hanage; Maria D. Van Kerkhove; T. Déirdre Hollingsworth; Jamie T. Griffin; Rebecca F. Baggaley; Helen E. Jenkins; Emily J. Lyons; Thibaut Jombart; Wes Hinsley; Nicholas C. Grassly; Francois Balloux; Azra C. Ghani; Neil M. Ferguson; Andrew Rambaut; Oliver G. Pybus; Hugo López-Gatell; Celia Alpuche-Aranda; Ietza Bojórquez Chapela; Ethel Palacios Zavala; Dulce Ma. Espejo Guevara; Francesco Checchi; Erika Garcia; Stéphane Hugonnet; Cathy Roth
Swine Flu Benchmark The World Health Organization (WHO) announced on 29 April 2009, a level-5 pandemic alert for a strain of H1N1 influenza originating in pigs in Mexico and transmitting from human to human in several countries. Fraser et al. (p. 1557, published online 11 May; see the cover) amassed a team of experts in Mexico and WHO to make an initial assessment of the outbreak with a view to guiding future policy. The outbreak appears to have originated in mid-February in the village of La Gloria, Veracruz, where over half the population suffered acute respiratory illness, affecting more than 61% of children under 15 years old in the community. The basic reproduction number (the number of people infected per patient) is in the range of 1.5—similar or less than that of the pandemics of 1918, 1957, and 1968. There remain significant uncertainties about the severity of this outbreak, which makes it difficult to compare the economic and societal costs of intervention with lives saved and the risks of generating antiviral resistance. An international collaborative effort has analyzed the initial dynamics of the swine flu outbreak. A novel influenza A (H1N1) virus has spread rapidly across the globe. Judging its pandemic potential is difficult with limited data, but nevertheless essential to inform appropriate health responses. By analyzing the outbreak in Mexico, early data on international spread, and viral genetic diversity, we make an early assessment of transmissibility and severity. Our estimates suggest that 23,000 (range 6000 to 32,000) individuals had been infected in Mexico by late April, giving an estimated case fatality ratio (CFR) of 0.4% (range: 0.3 to 1.8%) based on confirmed and suspected deaths reported to that time. In a community outbreak in the small community of La Gloria, Veracruz, no deaths were attributed to infection, giving an upper 95% bound on CFR of 0.6%. Thus, although substantial uncertainty remains, clinical severity appears less than that seen in the 1918 influenza pandemic but comparable with that seen in the 1957 pandemic. Clinical attack rates in children in La Gloria were twice that in adults (<15 years of age: 61%; ≥15 years: 29%). Three different epidemiological analyses gave basic reproduction number (R0) estimates in the range of 1.4 to 1.6, whereas a genetic analysis gave a central estimate of 1.2. This range of values is consistent with 14 to 73 generations of human-to-human transmission having occurred in Mexico to late April. Transmissibility is therefore substantially higher than that of seasonal flu, and comparable with lower estimates of R0 obtained from previous influenza pandemics.
Bioinformatics | 1997
Nicholas C. Grassly; Jun Adachi; Andrew Rambaut
MOTIVATION Seq-Gen is a program that will simulate the evolution of nucleotide sequences along a phylogeny, using common models of the substitution process. A range of models of molecular evolution are implemented, including the general reversible model. Nucleotide frequencies and other parameters of the model may be given and site-specific rate heterogeneity can also be incorporated in a number of ways. Any number of trees may be read in and the program will produce any number of data sets for each tree. Thus, large sets of replicate simulations can be easily created. This can be used to test phylogenetic hypotheses using the parametric bootstrap. AVAILABILITY Seq-Gen can be obtained by WWW from http:/(/)evolve.zoo.ox.ac.uk/Seq-Gen/seq-gen.html++ + or by FTP from ftp:/(/)evolve.zoo.ox.ac.uk/packages/Seq-Gen/. The package includes the source code, manual and example files. An Apple Macintosh version is available from the same sites.
Proceedings of the Royal Society of London B: Biological Sciences | 2006
Nicholas C. Grassly; Christophe Fraser
Seasonal change in the incidence of infectious diseases is a common phenomenon in both temperate and tropical climates. However, the mechanisms responsible for seasonal disease incidence, and the epidemiological consequences of seasonality, are poorly understood with rare exception. Standard epidemiological theory and concepts such as the basic reproductive number R0 no longer apply, and the implications for interventions that themselves may be periodic, such as pulse vaccination, have not been formally examined. This paper examines the causes and consequences of seasonality, and in so doing derives several new results concerning vaccination strategy and the interpretation of disease outbreak data. It begins with a brief review of published scientific studies in support of different causes of seasonality in infectious diseases of humans, identifying four principal mechanisms and their association with different routes of transmission. It then describes the consequences of seasonality for R0, disease outbreaks, endemic dynamics and persistence. Finally, a mathematical analysis of routine and pulse vaccination programmes for seasonal infections is presented. The synthesis of seasonal infectious disease epidemiology attempted by this paper highlights the need for further empirical and theoretical work.
Nature Reviews Microbiology | 2008
Nicholas C. Grassly; Christophe Fraser
Mathematical analysis and modelling is central to infectious disease epidemiology. Here, we provide an intuitive introduction to the process of disease transmission, how this stochastic process can be represented mathematically and how this mathematical representation can be used to analyse the emergent dynamics of observed epidemics. Progress in mathematical analysis and modelling is of fundamental importance to our growing understanding of pathogen evolution and ecology. The fit of mathematical models to surveillance data has informed both scientific research and health policy. This Review is illustrated throughout by such applications and ends with suggestions of open challenges in mathematical epidemiology.
Science | 2006
Nicholas C. Grassly; Christophe Fraser; Jay Wenger; Jagadish M. Deshpande; Roland W. Sutter; David L. Heymann; R. B. Aylward
The feasibility of global polio eradication is being questioned as a result of continued transmission in a few localities that act as sources for outbreaks elsewhere. Perhaps the greatest challenge is in India, where transmission has persisted in Uttar Pradesh and Bihar despite high coverage with multiple doses of vaccine. We estimate key parameters governing the seasonal epidemics in these areas and show that high population density and poor sanitation cause persistence by not only facilitating transmission of poliovirus but also severely compromising the efficacy of the trivalent vaccine. We analyze strategies to counteract this and show that switching to monovalent vaccine may finally interrupt virus transmission.
Nature | 2005
Nicholas C. Grassly; Christophe Fraser; Geoffrey P. Garnett
A central question in population ecology is the role of ‘exogenous’ environmental factors versus density-dependent ‘endogenous’ biological factors in driving changes in population numbers. This question is also central to infectious disease epidemiology, where changes in disease incidence due to behavioural or environmental change must be distinguished from the nonlinear dynamics of the parasite population. Repeated epidemics of primary and secondary syphilis infection in the United States over the past 50 yr have previously been attributed to social and behavioural changes. Here, we show that these epidemics represent a rare example of unforced, endogenous oscillations in disease incidence, with an 8–11-yr period that is predicted by the natural dynamics of syphilis infection, to which there is partially protective immunity. This conclusion is supported by the absence of oscillations in gonorrhoea cases, where a protective immune response is absent. We further demonstrate increased synchrony of syphilis oscillations across cities over time, providing empirical evidence for an increasingly connected sexual network in the United States.
The Lancet | 2002
John Stover; Neff Walker; Geoff P. Garnett; Joshua A. Salomon; Karen A. Stanecki; Peter D. Ghys; Nicholas C. Grassly; Roy M. Anderson; Bernhard Schwartländer
HIV/AIDS has reached pandemic proportions, and is one of the leading causes of death worldwide. In 2001, the Declaration of Commitment on HIV/AIDS set out several aims with respect to reducing the effect and spread of HIV/AIDS, and an expanded response in low-income and middle-income countries was initiated. Here we examine the potential effect of the expanded global response based on analyses of epidemiological data, of mathematical models of HIV-1 transmission, and a review of the impact of prevention interventions on risk behaviours. Analyses suggest that if the successes achieved in some countries in prevention of transmission can be expanded to a global scale by 2005, about 29 million new infections could be prevented by 2010.
The Lancet | 2007
Nicholas C. Grassly; Jay Wenger; Sunita Durrani; Sunil Bahl; Jagadish M. Deshpande; Roland W. Sutter; David L. Heymann; R. Bruce Aylward
BACKGROUND A high-potency monovalent oral type 1 poliovirus vaccine (mOPV1) was developed in 2005 to tackle persistent poliovirus transmission in the last remaining infected countries. Our aim was to assess the efficacy of this vaccine in India. METHODS We estimated the efficacy of mOPV1 used in supplementary immunisation activities from 2076 matched case-control pairs of confirmed cases of poliomyelitis caused by type 1 wild poliovirus and cases of non-polio acute flaccid paralysis in India. The effect of the introduction of mOPV1 on population immunity was calculated on the basis of estimates of vaccination coverage from data for non-polio acute flaccid paralysis. FINDINGS In areas of persistent poliovirus transmission in Uttar Pradesh, the protective efficacy of mOPV1 was estimated to be 30% (95% CI 19-41) per dose against type 1 paralytic disease, compared with 11% (7-14) for the trivalent oral vaccine. 76-82% of children aged 0-23 months were estimated to be protected by vaccination against type 1 poliovirus at the end of 2006, compared with 59% at the end of 2004, before the introduction of mOPV1. INTERPRETATION Under conditions where the efficacy of live-attenuated oral poliovirus vaccines is compromised by a high prevalence of diarrhoea and other infections, a dose of high-potency mOPV1 is almost three times more effective against type 1 poliomyelitis disease than is trivalent vaccine. Achieving high coverage with this new vaccine in areas of persistent poliovirus transmission should substantially improve the probability of rapidly eliminating transmission of the disease.
BMJ | 2003
Elizabeth Pisani; Geoff P. Garnett; Nicholas C. Grassly; Tim Brown; John Stover; Catherine Hankins; Neff Walker; Peter D. Ghys
Despite worldwide efforts to prevent HIV infection, the number of people affected continues to rise. The authors of this article argue that a commonsense approach based on simple country by country analyses could improve the situation
Sexually Transmitted Infections | 2004
Peter D. Ghys; Tim Brown; Nicholas C. Grassly; Geoffrey P. Garnett; K Stanecki; John Stover; Neff Walker
This paper describes the Estimation and Projection Package (EPP) for estimating and projecting HIV prevalence levels in countries with generalised epidemics. The paper gives an overall summary of the software and interface. It describes the process of defining and modelling a national epidemic in terms of locally relevant sub-epidemics and the four epidemiological parameters used to fit a curve to produce the prevalence trends in the epidemic. It also provides an example of using the EPP in a country with a generalised epidemic. The paper discusses the strengths and weaknesses of the software and its envisaged future developments.