Nicholas C. Harris
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas C. Harris.
Nature Communications | 2015
Faraz Najafi; Jacob Mower; Nicholas C. Harris; Francesco Bellei; Andrew E. Dane; Catherine Lee; Xiaolong Hu; Prashanta Kharel; Francesco Marsili; Solomon Assefa; Karl K. Berggren; Dirk Englund
Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light.
IEEE Solid-state Circuits Magazine | 2013
Michael Hochberg; Nicholas C. Harris; Ran Ding; Yi Zhang; Ari Novack; Zhe Xuan; Tom Baehr-Jones
Something very surprising has been happening in photonics recently: the same foundries and processes that were developed to build transistors are being repurposed to build chips that can generate, detect, modulate, and otherwise manipulate light. This is pretty counterintuitive, since the electronics industry spends billions of dollars to develop tools, processes, and facilities that lend themselves to building the very best transistors without any thought about how to make these processes compatible with photonics (with the obvious exception of the processes designed to make CMOS and CCD camera chips).
Physical Review X | 2014
Nicholas C. Harris; Davide Grassani; Angelica Simbula; Mihir Pant; Matteo Galli; Tom Baehr-Jones; Michael Hochberg; Dirk Englund; Daniele Bajoni; Christophe Galland
We demonstrate the generation of quantum-correlated photon pairs combined with the spectral filtering of the pump field by more than 95 dB on a single silicon chip using electrically tunable ring resonators and passive Bragg reflectors. Moreover, we perform the demultiplexing and routing of signal and idler photons after transferring them via an optical fiber to a second identical chip. Nonclassical two-photon temporal correlations with a coincidence-to-accidental ratio of 50 are measured without further off-chip filtering. Our system, fabricated with high yield and reproducibility in a CMOS-compatible process, paves the way toward large-scale quantum photonic circuits by allowing sources and detectors of single photons to be integrated on the same chip.
photonics society summer topical meeting series | 2017
Yichen Shen; Nicholas C. Harris; Scott A. Skirlo; Dirk Englund; Marin Soljacic
Artificial Neural Networks have dramatically improved performance for many machine learning tasks. We demonstrate a new architecture for a fully optical neural network that enables a computational speed enhancement of at least two orders of magnitude and three orders of magnitude in power efficiency over state-of-the-art electronics.
Nature Photonics | 2017
Nicholas C. Harris; Gregory R. Steinbrecher; Mihika Prabhu; Yoav Lahini; Jacob Mower; Darius Bunandar; Changchen Chen; Franco N. C. Wong; Tom Baehr-Jones; Michael Hochberg; Seth Lloyd; Dirk Englund
Environmental noise and disorder play critical roles in quantum particle and wave transport in complex media, including solid-state and biological systems. While separately both effects are known to reduce transport, recent work predicts that in a limited region of parameter space, noise-induced dephasing can counteract localization effects, leading to enhanced quantum transport. Photonic integrated circuits are promising platforms for studying such effects, with a central goal of developing large systems providing low-loss, high-fidelity control over all parameters of the transport problem. Here, we fully map the role of disorder in quantum transport using a nanophotonic processor: a mesh of 88 generalized beamsplitters programmable on microsecond timescales. Over 64,400 experiments we observe distinct transport regimes, including environment-assisted quantum transport and the ‘quantum Goldilocks’ regime in statically disordered discrete-time systems. Low-loss and high-fidelity programmable transformations make this nanophotonic processor a promising platform for many-boson quantum simulation experiments. A large-scale, low-loss and phase-stable programmable nanophotonic processor is fabricated to explore quantum transport phenomena. The signature of environment-assisted quantum transport in discrete-time systems is observed for the first time.
Scientific Reports | 2015
Luozhou Li; Igal Bayn; Ming Lu; Chang Yong Nam; Tim Schröder; Aaron Stein; Nicholas C. Harris; Dirk Englund
A major challenge in nanofabrication is to pattern unconventional substrates that cannot be processed for a variety of reasons, such as incompatibility with spin coating, electron beam lithography, optical lithography, or wet chemical steps. Here, we present a versatile nanofabrication method based on re-usable silicon membrane hard masks, patterned using standard lithography and mature silicon processing technology. These masks, transferred precisely onto targeted regions, can be in the millimetre scale. They allow for fabrication on a wide range of substrates, including rough, soft, and non-conductive materials, enabling feature linewidths down to 10 nm. Plasma etching, lift-off, and ion implantation are realized without the need for scanning electron/ion beam processing, UV exposure, or wet etching on target substrates.
Optics Express | 2013
Christophe Galland; Ran Ding; Nicholas C. Harris; Tom Baehr-Jones; Michael Hochberg
Breaking the reciprocity of light propagation in a nanoscale photonic integrated circuit (PIC) is a topic of intense research, fostered by the promises of this technology in areas ranging from experimental research in classical and quantum optics to high-rate telecommunications and data interconnects. In particular, silicon PICs fabricated in processes compatible with the existing complementary metal-oxide-semiconductor (CMOS) infrastructure have attracted remarkable attention. However, a practical solution for integrating optical isolators and circulators within the current CMOS technology remains elusive. Here, we introduce a new non-reciprocal photonic circuit operating with standard single-mode waveguides or optical fibers. Our design exploits a time-dependent index modulation obtained with conventional phase modulators such as the one widely available in silicon photonics platforms. Because it is based on fully balanced interferometers and does not involve resonant structures, our scheme is also intrinsically broadband. Using realistic parameters we calculate an extinction ratio superior to 20dB and insertion loss below 3dB.
Nanophotonics | 2016
Nicholas C. Harris; Darius Bunandar; Mihir Pant; Greg Steinbrecher; Jacob Mower; Mihika Prabhu; Tom Baehr-Jones; Michael Hochberg; Dirk Englund
Abstract Quantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today’s classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes. Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.
Scientific Reports | 2016
Davide Grassani; Angelica Simbula; Stefano Pirotta; Matteo Galli; Matteo Menotti; Nicholas C. Harris; Tom Baehr-Jones; Michael Hochberg; Christophe Galland; Marco Liscidini; Daniele Bajoni
Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.
Journal of Lightwave Technology | 2013
Nicholas C. Harris; Tom Baehr-Jones; Andy Eu-Jin Lim; Tsung Yang Liow; G. Q. Lo; Michael Hochberg
In the field of silicon photonics, it has only recently become possible to build complex systems. As system power constraints and complexity increase, design margins will decrease - making understanding device noise performance and device-specific noise origins increasingly necessary. We demonstrate a waveguide-coupled germanium metal-semiconductor-metal photodetector exhibiting photoconductive gain with a responsivity of 1.76 A/W at 5 V bias and 10.6±0.96 fF capacitance. Our measurements indicate that a significant portion of the dark current is not associated with the generation of shot noise. The noise elbow at 5 V bias is measured to be approximately 150 MHz and the high-frequency detector noise reaches the Johnson noise floor.