Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas C.P. Cross is active.

Publication


Featured researches published by Nicholas C.P. Cross.


Leukemia | 2002

Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy

Andreas Hochhaus; Sebastian Kreil; A. S. Corbin; P La Rosée; Markus Müller; Tanja Lahaye; Benjamin Hanfstein; C. Schoch; Nicholas C.P. Cross; Ute Berger; H. Gschaidmeier; Brian J. Druker; R. Hehlmann

Selective inhibition of the BCR-ABL tyrosine kinase by imatinib (STI571, Glivec/Gleevec) is a promising new therapeutic strategy in patients with chronic myelogenous leukemia (CML). Despite significant hematologic and cytogenetic responses, resistance occurs, particularly in patients with advanced disease. We sought to determine the underlying mechanisms. Sixty-six patients with CML in myeloid blast crisis (n = 33), lymphoid blast crisis (n = 2), accelerated phase (n = 16), chronic phase (n = 13), and BCR-ABL-positive acute lymphoblastic leukemia (n = 2) resistant to imatinib were investigated. Median duration of imatinib therapy was 148 days (range 6–882). Patients were evaluated for genomic amplification of BCR-ABL, overexpression of BCR-ABL transcripts, clonal karyotypic evolution, and mutations of the imatinib binding site in the BCR-ABL tyrosine kinase domain. Results were as follows: (1) Median levels of BCR-ABL transcripts, were not significantly changed at the time of resistance but 7/55 patients showed a >10-fold increase in BCR-ABL levels; (2) genomic amplification of BCR-ABL was found in 2/32 patients evaluated by fluorescence in situ hybridization; (3) additional chromosomal aberrations were observed in 19/36 patients; (4) point mutations of the ABL tyrosine kinase domain resulting in reactivation of the BCR-ABL tyrosine kinase were detected in 23/66 patients. In conclusion, although the heterogeneous development of imatinib resistance is challenging, the fact that BCR-ABL is active in many resistant patients suggests that the chimeric oncoprotein remains a good therapeutic target. However, patients with clonal evolution are more likely to have BCR-ABL-independent mechanisms of resistance. The observations warrant trials combining imatinib with other agents.


Nature Genetics | 2010

Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders

Thomas Ernst; Andrew Chase; Joannah Score; Claire Hidalgo-Curtis; Catherine Bryant; Amy V. Jones; Katherine Waghorn; Katerina Zoi; Fiona M. Ross; Andreas Reiter; Andreas Hochhaus; Hans G. Drexler; Andrew S Duncombe; Francisco Cervantes; David Oscier; Jacqueline Boultwood; Francis H. Grand; Nicholas C.P. Cross

Abnormalities of chromosome 7q are common in myeloid malignancies, but no specific target genes have yet been identified. Here, we describe the finding of homozygous EZH2 mutations in 9 of 12 individuals with 7q acquired uniparental disomy. Screening of a total of 614 individuals with myeloid disorders revealed 49 monoallelic or biallelic EZH2 mutations in 42 individuals; the mutations were found most commonly in those with myelodysplastic/myeloproliferative neoplasms (27 out of 219 individuals, or 12%) and in those with myelofibrosis (4 out of 30 individuals, or 13%). EZH2 encodes the catalytic subunit of the polycomb repressive complex 2 (PRC2), a highly conserved histone H3 lysine 27 (H3K27) methyltransferase that influences stem cell renewal by epigenetic repression of genes involved in cell fate decisions. EZH2 has oncogenic activity, and its overexpression has previously been causally linked to differentiation blocks in epithelial tumors. Notably, the mutations we identified resulted in premature chain termination or direct abrogation of histone methyltransferase activity, suggesting that EZH2 acts as a tumor suppressor for myeloid malignancies.


The New England Journal of Medicine | 2011

Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts.

Elli Papaemmanuil; Mario Cazzola; Jacqueline Boultwood; Luca Malcovati; Paresh Vyas; David T. Bowen; Andrea Pellagatti; James S. Wainscoat; Eva Hellström-Lindberg; Carlo Gambacorti-Passerini; Anna L. Godfrey; I. Rapado; A. Cvejic; Richard Rance; C. McGee; Peter Ellis; Laura Mudie; Phil Stephens; Stuart McLaren; Charlie E. Massie; Patrick Tarpey; Ignacio Varela; Serena Nik-Zainal; Helen Davies; Adam Shlien; David Jones; Keiran Raine; Jonathon Hinton; Adam Butler; J Teague

BACKGROUND Myelodysplastic syndromes are a diverse and common group of chronic hematologic cancers. The identification of new genetic lesions could facilitate new diagnostic and therapeutic strategies. METHODS We used massively parallel sequencing technology to identify somatically acquired point mutations across all protein-coding exons in the genome in 9 patients with low-grade myelodysplasia. Targeted resequencing of the gene encoding RNA splicing factor 3B, subunit 1 (SF3B1), was also performed in a cohort of 2087 patients with myeloid or other cancers. RESULTS We identified 64 point mutations in the 9 patients. Recurrent somatically acquired mutations were identified in SF3B1. Follow-up revealed SF3B1 mutations in 72 of 354 patients (20%) with myelodysplastic syndromes, with particularly high frequency among patients whose disease was characterized by ring sideroblasts (53 of 82 [65%]). The gene was also mutated in 1 to 5% of patients with a variety of other tumor types. The observed mutations were less deleterious than was expected on the basis of chance, suggesting that the mutated protein retains structural integrity with altered function. SF3B1 mutations were associated with down-regulation of key gene networks, including core mitochondrial pathways. Clinically, patients with SF3B1 mutations had fewer cytopenias and longer event-free survival than patients without SF3B1 mutations. CONCLUSIONS Mutations in SF3B1 implicate abnormalities of messenger RNA splicing in the pathogenesis of myelodysplastic syndromes. (Funded by the Wellcome Trust and others.).


Clinical Cancer Research | 2011

Aberrations of EZH2 in Cancer

Andrew Chase; Nicholas C.P. Cross

Control of gene expression is exerted at a number of different levels, one of which is the accessibility of genes and their controlling elements to the transcriptional machinery. Accessibility is dictated broadly by the degree of chromatin compaction, which is influenced in part by polycomb group proteins. EZH2, together with SUZ12 and EED, forms the polycomb repressive complex 2 (PRC2), which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3). PRC2 may recruit other polycomb complexes, DNA methyltransferases, and histone deacetylases, resulting in additional transcriptional repressive marks and chromatin compaction at key developmental loci. Overexpression of EZH2 is a marker of advanced and metastatic disease in many solid tumors, including prostate and breast cancer. Mutation of EZH2 Y641 is described in lymphoma and results in enhanced activity, whereas inactivating mutations are seen in poor prognosis myeloid neoplasms. No histone demethylating agents are currently available for treatment of patients, but 3-deazaneplanocin (DZNep) reduces EZH2 levels and H3K27 trimethylation, resulting in reduced cell proliferation in breast and prostate cancer cells in vitro. Furthermore, synergistic effects are seen for combined treatment with DNA demethylating agents and histone deacetylation inhibitors, opening up the possibility of refined epigenetic treatments in the future. Clin Cancer Res; 17(9); 2613–8. ©2011 AACR.


Leukemia | 2013

Mutations and prognosis in primary myelofibrosis

Alessandro M. Vannucchi; Terra L. Lasho; Paola Guglielmelli; Flavia Biamonte; Animesh Pardanani; Arturo Pereira; Christy Finke; Joannah Score; Naseema Gangat; Carmela Mannarelli; Rhett P. Ketterling; Giada Rotunno; Ryan A. Knudson; Maria Chiara Susini; Rebecca R. Laborde; Ambra Spolverini; Alessandro Pancrazzi; Lisa Pieri; Rossella Manfredini; Enrico Tagliafico; Roberta Zini; Amy V. Jones; Katerina Zoi; Andreas Reiter; Andrew S Duncombe; Daniela Pietra; Elisa Rumi; Francisco Cervantes; Giovanni Barosi; M Cazzola

Patient outcome in primary myelofibrosis (PMF) is significantly influenced by karyotype. We studied 879 PMF patients to determine the individual and combinatorial prognostic relevance of somatic mutations. Analysis was performed in 483 European patients and the seminal observations were validated in 396 Mayo Clinic patients. Samples from the European cohort, collected at time of diagnosis, were analyzed for mutations in ASXL1, SRSF2, EZH2, TET2, DNMT3A, CBL, IDH1, IDH2, MPL and JAK2. Of these, ASXL1, SRSF2 and EZH2 mutations inter-independently predicted shortened survival. However, only ASXL1 mutations (HR: 2.02; P<0.001) remained significant in the context of the International Prognostic Scoring System (IPSS). These observations were validated in the Mayo Clinic cohort where mutation and survival analyses were performed from time of referral. ASXL1, SRSF2 and EZH2 mutations were independently associated with poor survival, but only ASXL1 mutations held their prognostic relevance (HR: 1.4; P=0.04) independent of the Dynamic IPSS (DIPSS)-plus model, which incorporates cytogenetic risk. In the European cohort, leukemia-free survival was negatively affected by IDH1/2, SRSF2 and ASXL1 mutations and in the Mayo cohort by IDH1 and SRSF2 mutations. Mutational profiling for ASXL1, EZH2, SRSF2 and IDH identifies PMF patients who are at risk for premature death or leukemic transformation.


Blood | 2009

Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms

Francis H. Grand; Claire Hidalgo-Curtis; Thomas Ernst; Katerina Zoi; Christine Zoi; Carolann McGuire; Sebastian Kreil; Amy V. Jones; Joannah Score; Georgia Metzgeroth; David Oscier; Andrew G. Hall; Christian Brandts; Hubert Serve; Andreas Reiter; Andrew Chase; Nicholas C.P. Cross

Recent evidence has demonstrated that acquired uniparental disomy (aUPD) is a novel mechanism by which pathogenetic mutations in cancer may be reduced to homozygosity. To help identify novel mutations in myeloproliferative neoplasms (MPNs), we performed a genome-wide single nucleotide polymorphism (SNP) screen to identify aUPD in 58 patients with atypical chronic myeloid leukemia (aCML; n = 30), JAK2 mutation-negative myelofibrosis (MF; n = 18), or JAK2 mutation-negative polycythemia vera (PV; n = 10). Stretches of homozygous, copy neutral SNP calls greater than 20Mb were seen in 10 (33%) aCML and 1 (6%) MF, but were absent in PV. In total, 7 different chromosomes were involved with 7q and 11q each affected in 10% of aCML cases. CBL mutations were identified in all 3 cases with 11q aUPD and analysis of 574 additional MPNs revealed a total of 27 CBL variants in 26 patients with aCML, myelofibrosis or chronic myelomonocytic leukemia. Most variants were missense substitutions in the RING or linker domains that abrogated CBL ubiquitin ligase activity and conferred a proliferative advantage to 32D cells overexpressing FLT3. We conclude that acquired, transforming CBL mutations are a novel and widespread pathogenetic abnormality in morphologically related, clinically aggressive MPNs.


Blood | 2008

Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials

Susan Branford; Linda Fletcher; Nicholas C.P. Cross; Martin C. Müller; Andreas Hochhaus; Dong-Wook Kim; Jerald P. Radich; Giuseppe Saglio; Fabrizio Pane; Suzanne Kamel-Reid; Y. Lynn Wang; Richard D. Press; Kevin Lynch; Zbigniew Rudzki; John M. Goldman; Timothy P. Hughes

An international basis for comparison of BCR-ABL mRNA levels is required for the common interpretation of data derived from individual laboratories. This will aid clinical decisions for individual patients with chronic myeloid leukemia (CML) and assist interpretation of results from clinical studies. We aligned BCR-ABL values generated by 38 laboratories to an international scale (IS) where a major molecular response (MMR) is 0.1% or less. Alignment was achieved by application of laboratory-specific conversion factors calculated by comparisons performed with patient samples against a reference method. A validation procedure was completed for 19 methods. We determined performance characteristics (bias and precision) for consistent interpretation of MMR after IS conversion. When methods achieved an average BCR-ABL difference of plus or minus 1.2-fold from the reference method and 95% limits of agreement within plus or minus 5-fold, the MMR concordance was 91%. These criteria were met by 58% of methods. When not met, the MMR concordance was 74% or less. However, irrespective of precision, when the bias was plus or minus 1.2-fold as achieved by 89% of methods, there was good agreement between the overall MMR rates. This indicates that the IS can deliver accurate comparison of molecular response rates between clinical trials when measured by different laboratories.


Leukemia | 1999

Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR

Michael Emig; Susanne Saussele; H. Wittor; Andreas Weisser; Andreas Reiter; Andreas Willer; Ute Berger; R. Hehlmann; Nicholas C.P. Cross; Andreas Hochhaus

We sought to establish a rapid and reliable RT-PCR approach for detection and quantification of BCR-ABL fusion transcripts using the LightCycler technology. This device combines rapid thermocycling with online detection of PCR product formation and is based on the fluorescence resonance energy transfer (FRET) between two adjacent hybridization probes carrying donor and acceptor fluorophores. A pair of probes was designed that was complementary to ABL exon 3, thus enabling detection of all known BCR-ABL variants and also normal ABL as an internal control. Conditions were established to amplify less than 10 target molecules/reaction and to detect one CML cell in 105cells from healthy donors. To determine the utility of the assay, we quantified BCR-ABL and ABL transcripts in 254 samples (222 peripheral blood, 32 bone marrow) from 120 patients with CML after therapy with IFN-α (n = 219), allogeneic BMT (n = 17), chemotherapy (n = 11), or at diagnosis (n = 7). The level of residual disease in the 245 BCR-ABL positive specimens was expressed as the ratio of BCR-ABL/ABL. This ratio was compared to results obtained by three established methods from contemporaneous specimens. A highly significant correlation was seen between the BCR-ABL/ABL ratios determined by the LightCycler and (1) the BCR-ABL/ABL ratios obtained by nested competitive RT-PCR (n = 201, r = 0.90, P < 0.0001); (2) the proportion of philadelphia chromosome positive metaphases determined by cytogenetics (n = 81, P < 0.0001); and (3) the bcr ratio determined by southern blot analysis (n = 122, P < 0.0001). we conclude that real-time pcr with hybridization probes is a reliable and sensitive method to monitor cml patients after therapy. the major advantages of the methodology are (1) amplification and product analysis are performed in the same reaction vessel, avoiding the risk of contamination; (2) the results are standardized by the quantification of housekeeping genes; and (3) the complete pcr analysis takes less than 60 min.


Nature Genetics | 2009

JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms.

Amy V. Jones; Andrew Chase; Richard T. Silver; David Oscier; Katerina Zoi; Y. Lynn Wang; Holger Cario; Heike L. Pahl; Andrew Collins; Andreas Reiter; Francis H. Grand; Nicholas C.P. Cross

Chronic myeloproliferative neoplasms (MPNs) are a group of related conditions characterized by the overproduction of cells from one or more myeloid lineages. More than 95% of cases of polycythemia vera, and roughly half of essential thrombocythemia and primary myelofibrosis acquire a unique somatic 1849G>T JAK2 mutation (encoding V617F) that is believed to be a critical driver of excess proliferation. We report here that JAK2V617F-associated disease is strongly associated with a specific constitutional JAK2 haplotype, designated 46/1, in all three disease entities compared to healthy controls (polycythemia vera, n = 192, P = 2.9 × 10−16; essential thrombocythemia, n = 78, P = 8.2 × 10−9 and myelofibrosis, n = 41, P = 8.0 × 10−5). Furthermore, JAK2V617F specifically arises on the 46/1 allele in most cases. The 46/1 JAK2 haplotype thus predisposes to the development of JAK2V617F-associated MPNs (OR = 3.7; 95% CI = 3.1–4.3) and provides a model whereby a constitutional genetic factor is associated with an increased risk of acquiring a specific somatic mutation.


Journal of Clinical Oncology | 2013

Prognostic Score Including Gene Mutations in Chronic Myelomonocytic Leukemia

Olivier Kosmider; Aline Renneville; Véronique Gelsi-Boyer; Manja Meggendorfer; Margot Morabito; Céline Berthon; Lionel Ades; Pierre Fenaux; Odile Beyne-Rauzy; Norbert Vey; Thorsten Braun; Torsten Haferlach; Francois Dreyfus; Nicholas C.P. Cross; Claude Preudhomme; Olivier Bernard; Michaela Fontenay; William Vainchenker; Susanne Schnittger; Daniel Birnbaum; Nathalie Droin; Eric Solary

PURPOSE Several prognostic scoring systems have been proposed for chronic myelomonocytic leukemia (CMML), a disease in which some gene mutations-including ASXL1-have been associated with poor prognosis in univariable analyses. We developed and validated a prognostic score for overall survival (OS) based on mutational status and standard clinical variables. PATIENTS AND METHODS We genotyped ASXL1 and up to 18 other genes including epigenetic (TET2, EZH2, IDH1, IDH2, DNMT3A), splicing (SF3B1, SRSF2, ZRSF2, U2AF1), transcription (RUNX1, NPM1, TP53), and signaling (NRAS, KRAS, CBL, JAK2, FLT3) regulators in 312 patients with CMML. Genotypes and clinical variables were included in a multivariable Cox model of OS validated by bootstrapping. A scoring system was developed using regression coefficients from this model. RESULTS ASXL1 mutations (P < .0001) and, to a lesser extent, SRSF2 (P = .03), CBL (P = .003), and IDH2 (P = .03) mutations predicted inferior OS in univariable analysis. The retained independent prognostic factors included ASXL1 mutations, age older than 65 years, WBC count greater than 15 ×10(9)/L, platelet count less than 100 ×10(9)/L, and anemia (hemoglobin < 10 g/dL in female patients, < 11g/dL in male patients). The resulting five-parameter prognostic score delineated three groups of patients with median OS not reached, 38.5 months, and 14.4 months, respectively (P < .0001), and was validated in an independent cohort of 165 patients (P < .0001). CONCLUSION A new prognostic score including ASXL1 status, age, hemoglobin, WBC, and platelet counts defines three groups of CMML patients with distinct outcomes. Based on concordance analysis, this score appears more discriminative than those based solely on clinical parameters.

Collaboration


Dive into the Nicholas C.P. Cross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Chase

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy V. Jones

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joannah Score

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge