Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrew Chase is active.

Publication


Featured researches published by Andrew Chase.


Nature Genetics | 2010

Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders

Thomas Ernst; Andrew Chase; Joannah Score; Claire Hidalgo-Curtis; Catherine Bryant; Amy V. Jones; Katherine Waghorn; Katerina Zoi; Fiona M. Ross; Andreas Reiter; Andreas Hochhaus; Hans G. Drexler; Andrew S Duncombe; Francisco Cervantes; David Oscier; Jacqueline Boultwood; Francis H. Grand; Nicholas C.P. Cross

Abnormalities of chromosome 7q are common in myeloid malignancies, but no specific target genes have yet been identified. Here, we describe the finding of homozygous EZH2 mutations in 9 of 12 individuals with 7q acquired uniparental disomy. Screening of a total of 614 individuals with myeloid disorders revealed 49 monoallelic or biallelic EZH2 mutations in 42 individuals; the mutations were found most commonly in those with myelodysplastic/myeloproliferative neoplasms (27 out of 219 individuals, or 12%) and in those with myelofibrosis (4 out of 30 individuals, or 13%). EZH2 encodes the catalytic subunit of the polycomb repressive complex 2 (PRC2), a highly conserved histone H3 lysine 27 (H3K27) methyltransferase that influences stem cell renewal by epigenetic repression of genes involved in cell fate decisions. EZH2 has oncogenic activity, and its overexpression has previously been causally linked to differentiation blocks in epithelial tumors. Notably, the mutations we identified resulted in premature chain termination or direct abrogation of histone methyltransferase activity, suggesting that EZH2 acts as a tumor suppressor for myeloid malignancies.


Clinical Cancer Research | 2011

Aberrations of EZH2 in Cancer

Andrew Chase; Nicholas C.P. Cross

Control of gene expression is exerted at a number of different levels, one of which is the accessibility of genes and their controlling elements to the transcriptional machinery. Accessibility is dictated broadly by the degree of chromatin compaction, which is influenced in part by polycomb group proteins. EZH2, together with SUZ12 and EED, forms the polycomb repressive complex 2 (PRC2), which catalyzes trimethylation of histone H3 lysine 27 (H3K27me3). PRC2 may recruit other polycomb complexes, DNA methyltransferases, and histone deacetylases, resulting in additional transcriptional repressive marks and chromatin compaction at key developmental loci. Overexpression of EZH2 is a marker of advanced and metastatic disease in many solid tumors, including prostate and breast cancer. Mutation of EZH2 Y641 is described in lymphoma and results in enhanced activity, whereas inactivating mutations are seen in poor prognosis myeloid neoplasms. No histone demethylating agents are currently available for treatment of patients, but 3-deazaneplanocin (DZNep) reduces EZH2 levels and H3K27 trimethylation, resulting in reduced cell proliferation in breast and prostate cancer cells in vitro. Furthermore, synergistic effects are seen for combined treatment with DNA demethylating agents and histone deacetylation inhibitors, opening up the possibility of refined epigenetic treatments in the future. Clin Cancer Res; 17(9); 2613–8. ©2011 AACR.


Blood | 2009

Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms

Francis H. Grand; Claire Hidalgo-Curtis; Thomas Ernst; Katerina Zoi; Christine Zoi; Carolann McGuire; Sebastian Kreil; Amy V. Jones; Joannah Score; Georgia Metzgeroth; David Oscier; Andrew G. Hall; Christian Brandts; Hubert Serve; Andreas Reiter; Andrew Chase; Nicholas C.P. Cross

Recent evidence has demonstrated that acquired uniparental disomy (aUPD) is a novel mechanism by which pathogenetic mutations in cancer may be reduced to homozygosity. To help identify novel mutations in myeloproliferative neoplasms (MPNs), we performed a genome-wide single nucleotide polymorphism (SNP) screen to identify aUPD in 58 patients with atypical chronic myeloid leukemia (aCML; n = 30), JAK2 mutation-negative myelofibrosis (MF; n = 18), or JAK2 mutation-negative polycythemia vera (PV; n = 10). Stretches of homozygous, copy neutral SNP calls greater than 20Mb were seen in 10 (33%) aCML and 1 (6%) MF, but were absent in PV. In total, 7 different chromosomes were involved with 7q and 11q each affected in 10% of aCML cases. CBL mutations were identified in all 3 cases with 11q aUPD and analysis of 574 additional MPNs revealed a total of 27 CBL variants in 26 patients with aCML, myelofibrosis or chronic myelomonocytic leukemia. Most variants were missense substitutions in the RING or linker domains that abrogated CBL ubiquitin ligase activity and conferred a proliferative advantage to 32D cells overexpressing FLT3. We conclude that acquired, transforming CBL mutations are a novel and widespread pathogenetic abnormality in morphologically related, clinically aggressive MPNs.


Nature Genetics | 2009

JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms.

Amy V. Jones; Andrew Chase; Richard T. Silver; David Oscier; Katerina Zoi; Y. Lynn Wang; Holger Cario; Heike L. Pahl; Andrew Collins; Andreas Reiter; Francis H. Grand; Nicholas C.P. Cross

Chronic myeloproliferative neoplasms (MPNs) are a group of related conditions characterized by the overproduction of cells from one or more myeloid lineages. More than 95% of cases of polycythemia vera, and roughly half of essential thrombocythemia and primary myelofibrosis acquire a unique somatic 1849G>T JAK2 mutation (encoding V617F) that is believed to be a critical driver of excess proliferation. We report here that JAK2V617F-associated disease is strongly associated with a specific constitutional JAK2 haplotype, designated 46/1, in all three disease entities compared to healthy controls (polycythemia vera, n = 192, P = 2.9 × 10−16; essential thrombocythemia, n = 78, P = 8.2 × 10−9 and myelofibrosis, n = 41, P = 8.0 × 10−5). Furthermore, JAK2V617F specifically arises on the 46/1 allele in most cases. The 46/1 JAK2 haplotype thus predisposes to the development of JAK2V617F-associated MPNs (OR = 3.7; 95% CI = 3.1–4.3) and provides a model whereby a constitutional genetic factor is associated with an increased risk of acquiring a specific somatic mutation.


Nature Genetics | 2013

Recurrent SETBP1 Mutations in Atypical Chronic Myeloid Leukemia

Rocco Piazza; Simona Valletta; Nils Winkelmann; Sara Redaelli; Roberta Spinelli; Alessandra Pirola; Laura Antolini; Luca Mologni; Carla Donadoni; Elli Papaemmanuil; Susanne Schnittger; Dong Wook Kim; Jacqueline Boultwood; Fabio Rossi; Giuseppe Gaipa; Greta De Martini; Paola Francia di Celle; Hyun Gyung Jang; Valeria Fantin; Graham R. Bignell; Vera Magistroni; Torsten Haferlach; Enrico Maria Pogliani; Peter J. Campbell; Andrew Chase; William Tapper; Nicholas C.P. Cross; Carlo Gambacorti-Passerini

Atypical chronic myeloid leukemia (aCML) shares clinical and laboratory features with CML, but it lacks the BCR-ABL1 fusion. We performed exome sequencing of eight aCMLs and identified somatic alterations of SETBP1 (encoding a p.Gly870Ser alteration) in two cases. Targeted resequencing of 70 aCMLs, 574 diverse hematological malignancies and 344 cancer cell lines identified SETBP1 mutations in 24 cases, including 17 of 70 aCMLs (24.3%; 95% confidence interval (CI) = 16–35%). Most mutations (92%) were located between codons 858 and 871 and were identical to changes seen in individuals with Schinzel-Giedion syndrome. Individuals with mutations had higher white blood cell counts (P = 0.008) and worse prognosis (P = 0.01). The p.Gly870Ser alteration abrogated a site for ubiquitination, and cells exogenously expressing this mutant exhibited higher amounts of SETBP1 and SET protein, lower PP2A activity and higher proliferation rates relative to those expressing the wild-type protein. In summary, mutated SETBP1 represents a newly discovered oncogene present in aCML and closely related diseases.


Cancer Research | 2005

The t(8;9)(p22;p24) Is a Recurrent Abnormality in Chronic and Acute Leukemia that Fuses PCM1 to JAK2

Andreas Reiter; Christoph Walz; Ann Watmore; Claudia Schoch; Ilona Blau; Brigitte Schlegelberger; Ute Berger; Nicholas Telford; Shilani Aruliah; John A Yin; Danny Vanstraelen; Helen F Barker; Peter C Taylor; Aisling O'Driscoll; Fabio Benedetti; Cornelia Rudolph; Hans-Jochem Kolb; Andreas Hochhaus; Rüdiger Hehlmann; Andrew Chase; Nicholas C.P. Cross

We have identified a t(8;9)(p21-23;p23-24) in seven male patients (mean age 50, range 32-74) with diverse hematologic malignancies and clinical outcomes: atypical chronic myeloid leukemia/chronic eosinophilic leukemia (n = 5), secondary acute myeloid leukemia (n = 1), and pre-B-cell acute lymphoblastic leukemia (n = 1). Initial fluorescence in situ hybridization studies of one patient indicated that the nonreceptor tyrosine kinase Janus-activated kinase 2 (JAK2) at 9p24 was disrupted. Rapid amplification of cDNA ends-PCR identified the 8p22 partner gene as human autoantigen pericentriolar material (PCM1), a gene encoding a large centrosomal protein with multiple coiled-coil domains. Reverse transcription-PCR and fluorescence in situ hybridization confirmed the fusion in this case and also identified PCM1-JAK2 in the six other t(8;9) patients. The breakpoints were variable in both genes, but in all cases the chimeric mRNA is predicted to encode a protein that retains several of the predicted coiled-coil domains from PCM1 and the entire tyrosine kinase domain of JAK2. Reciprocal JAK2-PCM1 mRNA was not detected in any patient. We conclude that human autoantigen pericentriolar material (PCM1)-JAK2 is a novel, recurrent fusion gene in hematologic malignancies. Patients with PCM1-JAK2 disease are attractive candidates for targeted signal transduction therapy.


Leukemia | 2004

Targeting FGFR3 in multiple myeloma: inhibition of t(4;14)-positive cells by SU5402 and PD173074

E K Grand; Andrew Chase; C Heath; Amin Rahemtulla; Nicholas C.P. Cross

The t(4;14)(p16.3;q32), associated with 10–20% of cases of multiple myeloma (MM), deregulates the expression of MMSET and FGFR3. To assess the potential of FGFR3 as a drug target, we evaluated the effects of selective inhibitors on MM and control cell lines. SU5402 and PD173074 specifically inhibited the growth of the two t(4;14)-positive MM lines, KMS-11 and OPM-2. Importantly, inhibition was still observed in the presence of IL-6, a growth factor known to play an important role in MM. Both compounds induced a dose-dependent reduction in cell viability and an increase in apoptosis, accompanied by a decrease in extracellular signal-related kinase phosphorylation. In contrast, no inhibition was seen with either compound against t(4;14)-negative cell lines or NCI-H929, a t(4;14)-positive, FGFR3-negative MM cell line. FGFR3 is thus a plausible candidate for targeted therapy in a subset of MM patients.


Blood | 2012

Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms

Joannah Score; Claire Hidalgo-Curtis; Amy V. Jones; Nils Winkelmann; Alison C. Skinner; Daniel Ward; Katerina Zoi; Thomas Ernst; Frank Stegelmann; Konstanze Döhner; Andrew Chase; Nicholas C.P. Cross

The polycomb repressive complex 2 (PRC2) is a highly conserved histone H3 lysine 27 methyltransferase that regulates the expression of developmental genes. Inactivating mutations of the catalytic component of PRC2, EZH2, are seen in myeloid disorders. We reasoned that the other 2 core PRC2 components, SUZ12 and EED, may also be mutational targets in these diseases, as well as associated factors such as JARID2. SUZ12 mutations were identified in 1 of 2 patients with myelodysplastic syndrome/myeloproliferative neoplasms with 17q acquired uniparental disomy and in 2 of 2 myelofibrosis cases with focal 17q11 deletions. All 3 were missense mutations affecting the highly conserved VEFS domain. Analysis of a further 146 myelodysplastic syndrome/myeloproliferative neoplasm patients revealed an additional VEFS domain mutant, yielding a total mutation frequency of 1.4% (2 of 148). We did not find mutations of JARID2 or EED in association with acquired uniparental disomy for chromosome 6p or 11q, respectively; however, screening unselected cases identified missense mutations in EED (1 of 148; 1%) and JARID2 (3 of 148; 2%). All 3 SUZ12 mutations tested and the EED mutation reduced PRC2 histone methyltransferase activity in vitro, demonstrating that PRC2 function may be compromised in myeloid disorders by mutation of distinct genes.


Genes, Chromosomes and Cancer | 2004

Identification of a novel gene, FGFR1OP2, fused to FGFR1 in 8p11 myeloproliferative syndrome

Effie K. Grand; Francis H. Grand; Andrew Chase; Fiona M. Ross; Martin Corcoran; David Oscier; Nicholas C.P. Cross

The 8p11 myeloproliferative syndrome (EMS) is an aggressive hematological malignancy caused by the fusion of diverse partner genes to fibroblast growth factor receptor 1 (FGFR1). The partner proteins promote dimerization and ligand‐independent activation of FGFR1‐encoded tyrosine kinase, deregulating hemopoiesis in a manner analogous to BCR‐ABL in chronic myeloid leukemia. Here, we describe the identification of a new FGFR1 fusion gene in a patient who presented with T‐cell lymphoblastic lymphoma in conjunction with an acquired ins(12;8)(p11;p11p22). Initial FISH analysis and Southern blotting confirmed that FGFR1 was disrupted. Using 5′‐RACE PCR, we identified part of a novel gene, FGFR1OP, at chromosome band 12p11 that was fused to exon 9 of FGFR1.FGFR1OP2 is predicted to be translated into an evolutionarily conserved protein containing coiled‐coil domains but no other recognizable motifs. The presence of the chimeric gene was confirmed by RT‐PCR, genomic DNA PCR, and FISH. These data further support the central role of deregulated FGFR1 in the pathogenesis of EMS.


Genes, Chromosomes and Cancer | 2001

Identification of four new translocations involving FGFR1 in myeloid disorders

Jastinder Sohal; Andrew Chase; Martin Corcoran; David Oscier; Sameena Iqbal; Sally Parker; Jeanna Welborn; Richard I. Harris; Giovanni Martinelli; V Montefusco; Paul Sinclair; Bridget S. Wilkins; Henk van den Berg; Danny Vanstraelen; John M. Goldman; Nicholas C.P. Cross

The 8p11 myeloproliferative syndrome (EMS) is associated with three translocations, t(8;13)(p11;q12), t(8;9)(p11;q33), and t(6;8)(q27;p11), that fuse unrelated genes (ZNF198, CEP110, and FOP, respectively) to the entire tyrosine kinase domain of FGFR1. In all cases thus far examined (n = 10), the t(8;13) results in an identical mRNA fusion between ZNF198 exon 17 and FGFR1 exon 9. To determine if consistent fusions are also seen in the variant translocations, we performed RT‐PCR on four cases and sequenced the products. For two patients with a t(8;9), we found that CEP110 exon 15 was fused to FGFR1 exon 9. For two patients with a t(6;8), we found that FOP exon 5 (n = 1) or exon 7 (n = 1) was fused to FGFR1 exon 9. To determine if FGFR1 might be involved in other myeloid disorders with translocations of 8p, we developed a two‐color FISH assay using two differentially labeled PAC clones that flank FGFR1. Disruption of this gene was indicated in a patient with a t(8;17)(p11;q25) and Ph‐negative chronic myeloid leukemia in association with systemic malignant mast cell disease, a patient with acute myeloid leukemia with a t(8;11)(p11;p15), and two cases with T‐cell lymphoma, myeloproliferative disorder, and marrow eosinophilia with a t(8;12)(p11;q15) and ins(12;8)(p11;p11p21), respectively. For the patient with the t(8;11), the chromosome 11 breakpoint was determined to be in the vicinity of NUP98. We conclude that 1) all mRNA fusions in EMS result in splicing to FGFR1 exon 9 but breakpoints in FOP are variable, 2) two‐color FISH can identify patients with EMS, and 3) the t(8;17)(p11;q25), t(8;11)(p11;p15), t(8;12)(p11;q15), and ins(12;8)(p11;p11p21) are novel karyotypic changes that most likely involve FGFR1.

Collaboration


Dive into the Andrew Chase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy V. Jones

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

David Oscier

Royal Bournemouth Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joannah Score

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

William Tapper

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge