Nicholas D. Evans
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas D. Evans.
Nature Materials | 2009
Elsie S. Place; Nicholas D. Evans; Molly M. Stevens
The molecular and physical information coded within the extracellular milieu is informing the development of a new generation of biomaterials for tissue engineering. Several powerful extracellular influences have already found their way into cell-instructive scaffolds, while others remain largely unexplored. Yet for commercial success tissue engineering products must be not only efficacious but also cost-effective, introducing a potential dichotomy between the need for sophistication and ease of production. This is spurring interest in recreating extracellular influences in simplified forms, from the reduction of biopolymers into short functional domains, to the use of basic chemistries to manipulate cell fate. In the future these exciting developments are likely to help reconcile the clinical and commercial pressures on tissue engineering.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Suwimon Boonrungsiman; Eileen Gentleman; Raffaella Carzaniga; Nicholas D. Evans; David W. McComb; Alexandra E. Porter; Molly M. Stevens
Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.
Nature Materials | 2009
Eileen Gentleman; Robin J. Swain; Nicholas D. Evans; Suwimon Boonrungsiman; Gavin Jell; Michael Ball; Tamaryn A.V. Shean; Michelle L. Oyen; Alexandra E. Porter; Molly M. Stevens
An important aim of regenerative medicine is to restore tissue function with implantable, laboratory-grown constructs that contain tissue-specific cells that replicate the function of their counterparts in the healthy native tissue. It remains unclear, however, whether cells used in bone regeneration applications produce a material that mimics the structural and compositional complexity of native bone. By applying multivariate analysis techniques to micro-Raman spectra of mineralized nodules formed in vitro, we reveal cell-source-dependent differences in interactions between multiple bone-like mineral environments. Although osteoblasts and adult stem cells exhibited bone-specific biological activities and created a material with many of the hallmarks of native bone, the bone nodules formed from embryonic stem cells were an order of magnitude less stiff, and lacked the distinctive nanolevel architecture and complex biomolecular and mineral composition noted in the native tissue. Understanding the biological mechanisms of bone formation in vitro that contribute to cell-source-specific materials differences may facilitate the development of clinically successful engineered bone.
Biomaterials | 2010
Nicholas D. Evans; Eileen Gentleman; Xinyong Chen; Clive J. Roberts; Julia M. Polak; Molly M. Stevens
Embryonic stem cells (ESCs) are pluripotent and have the ability to differentiate into mineralising cells in vitro. The use of pluripotent cells in engineered bone substitutes will benefit from the development of bioactive scaffolds which encourage cell differentiation and tissue development. Extracellular matrix (ECM) may be a suitable candidate for use in such scaffolds since it plays an active role in cellular differentiation. Here, we test the hypothesis that tissue-specific ECM influences the differentiation of murine ESCs. We induced murine ESCs to differentiate by embryoid body formation, followed by dissociation and culture on ECM prepared by decellularisation of either osteogenic cell (MC3T3-E1) or non-osteogenic cell (A549) cultures, or on defined collagen type I matrix. We assessed osteogenic differentiation by formation of mineralised tissue and osteogenic gene expression, and found it to be significantly greater on MC3T3-E1 matrices than on any other matrix. The osteogenic effect of MC3T3-E1 matrix was reduced by heat treatment and abolished by trypsin, suggesting a bioactive proteinaceous component. These results demonstrate that decellularised bone-specific ECM promotes the osteogenic differentiation of ESCs. Our results are of fundamental interest and may help in tailoring scaffolds for tissue engineering applications which both incorporate tissue-specific ECM signals and stimulate stem-cell differentiation.
Journal of The Mechanical Behavior of Biomedical Materials | 2013
Nicholas D. Evans; Richard O.C. Oreffo; Eugene Healy; Philipp J. Thurner; Yu Hin Man
Skin wound healing is a vital process that is important for re-establishing the epithelial barrier following disease or injury. Aberrant or delayed skin wound healing increases the risk of infection, causes patient morbidity, and may lead to the formation of scar tissue. One of the most important events in wound healing is coverage of the wound with a new epithelial layer. This occurs when keratinocytes at the wound periphery divide and migrate to re-populate the wound bed. Many approaches are under investigation to promote and expedite this process, including the topical application of growth factors and the addition of autologous and allogeneic tissue or cell grafts. The mechanical environment of the wound site is also of fundamental importance for the rate and quality of wound healing. It is known that mechanical stress can influence wound healing by affecting the behaviour of cells within the dermis, but it remains unclear how mechanical forces affect the healing epidermis. Tensile forces are known to affect the behaviour of cells within epithelia, however, and the material properties of extracellular matrices, such as substrate stiffness, have been shown to affect the morphology, proliferation, differentiation and migration of many different cell types. In this review we will introduce the structure of the skin and the process of wound healing. We will then discuss the evidence for the effect of tissue mechanics in re-epithelialisation and, in particular, on stem cell behaviour in the wound microenvironment and in intact skin. We will discuss how the elasticity, mechanical heterogeneity and topography of the wound extracellular matrix impact the rate and quality of wound healing, and how we may exploit this knowledge to expedite wound healing and mitigate scarring.
Materials Today | 2006
Nicholas D. Evans; Eileen Gentleman; Julia M. Polak
Today, most people know at least something about stem cells. Embryonic stem cells enjoy regular mentions in news programs and magazines, probably because of the controversial way in which they are generated but also because of their huge potential in medicine. Here we distinguish between and define types of stem cells, discuss techniques used so far to create various cells and tissues from stem cells, and discuss how three-dimensional supports and stem cells have been and should be used to encourage the development of functional replacement tissue.
European Journal of Immunology | 2005
Paul A. Smith; Nicole Heijmans; Boudewijn Ouwerling; Esther C. Breij; Nicholas D. Evans; Johannes M. van Noort; Arianne C. Plomp; Cécile Delarasse; Bert A. 't Hart; Danielle Pham-Dinh; Sandra Amor
Myelin oligodendrocyte glycoprotein (MOG) is a powerful encephalitogen for experimental autoimmune demyelination. However, the use of MOG peptides or recombinant proteins representing part of the protein fails to fully address the possible pathogenic role of the full‐length myelin‐derived protein expressing post‐translational modifications. Immunization of mice with central nervous system tissues from wild‐type (WT) and MOG‐deficient (MOG–/–) mice demonstrates that MOG in myelin is necessary for the development of chronic demyelinating experimental autoimmune encephalomyelitis (EAE) in mice. While immunization with WT spinal cord homogenate (SCH) resulted in a progressive EAE phenotype, MOG–/– SCH induced a mild self‐limiting acute disease. Following acute EAE with MOG–/– SCH, mice developed Tu2004cell responses to recombinant mouse MOG (rmMOG), indicating that MOG released from myelin is antigenic; however, the lack of chronic disease indicates that such responses were not pathogenic. Chronic demyelinating EAE was observed when MOG–/– SCH was reconstituted with a dose of rmMOG comparable to MOG in myelin (2.5% of total white matter‐derived protein). These data reveal that while immunization with the full‐length post‐translational modified form of MOG in myelin promotes the development of a more chronic autoimmune demyelinating neurological disease, MOG (and/or other myelin proteins) released from myelin during ongoing disease do not induce destructive autoimmunity.
Diabetes Technology & Therapeutics | 2003
Nicholas D. Evans; Luigi Gnudi; Olaf J. Rolinski; David J. S. Birch; John C. Pickup
The aim of this study was to develop an in vitro cell-culture model of skin-component cells to test the hypothesis that glucose can be monitored non-invasively by measuring NAD(P)H-related fluorescence changes in tissues. 3T3-L1 fibroblasts and adipocytes were grown in culture, and the response to added glucose was assessed by changes in steady-state autofluorescence at 400-500 nm [excitation at 340 nm, an index of NAD(P)H]. We also studied glucose-related fluorescence changes in cells stained with the mitochondrial marker, rhodamine-123. Fibroblasts and adipocytes showed glucose-dependent increases in autofluorescence with both short- and long-term exposure. Spectral properties indicated that the fluorescence was due to NAD(P)H production. With 5-h exposure to glucose, the maximal response was at 10-15 mmol/L glucose. Cells stained with the fluorescent mitochondrial marker, rhodamine-123, showed an immediate and marked decrease in fluorescence when exposed to glucose. We conclude that glucose can be sensed non-invasively by cellular fluorescence changes in fibroblasts and adipocytes. This is a model for the further exploration of fluorescence-based non-invasive metabolic monitoring in human diabetes.
Journal of Materials Chemistry B | 2014
Nicholas D. Evans; Eileen Gentleman
Cellular interactions with the extracellular matrix (ECM) are of fundamental importance in many normal and pathological biological processes, including development, cancer, and tissue homeostasis, healing and regeneration. Over the past few years, the mechanisms by which cells respond to the mechanical characteristics of the ECM have come under increased scrutiny from many research groups. Such research often involves placing cells on materials with tuneable stiffnesses, including synthetic polymers and natural proteins, or culturing cells on bendable micropost arrays. These techniques are often aimed at defining empirically the stiffnesses that cells experience in their interactions with the ECM, and measuring phenotypically how cells and tissues respond. In this review, we will summarise the evolution of materials for investigating cell and tissue mechanobiology. We then will discuss how material properties such as elastic modulus may be interpreted, particularly with regard to analytic measurements as an approximation of how cells themselves sense elastic modulus. Finally we will discuss how factors such as interfacial chemistry, ligand spacing, substrate thickness, elasticity and viscoelasticity affect mechanosensing in cells.
Stem Cells | 2016
Agnieszka A. Janeczek; Rahul S. Tare; Edoardo Scarpa; Inés Moreno-Jiménez; Caroline A. Rowland; Dominic C. Jenner; Tracey A. Newman; Richard O.C. Oreffo; Nicholas D. Evans
Activation of the canonical Wnt signaling pathway is an attractive anabolic therapeutic strategy for bone. Emerging data suggest that activation of the Wnt signaling pathway promotes bone mineral accrual in osteoporotic patients. The effect of Wnt stimulation in fracture healing is less clear as Wnt signaling has both stimulatory and inhibitory effects on osteogenesis. Here, we tested the hypothesis that transient Wnt stimulation promotes the expansion and osteogenesis of a Wnt‐responsive stem cell population present in human bone marrow. Bone marrow mononuclear cells (BMMNCs) were isolated from patients undergoing hip arthroplasty and exposed to Wnt3A protein. The effect of Wnt pathway stimulation was determined by measuring the frequency of stem cells within the BMMNC populations by fluorescence‐activated cell sorting and colony forming unit fibroblast (CFU‐F) assays, before determining their osteogenic capacity in in vitro differentiation experiments. We found that putative skeletal stem cells in BMMNC isolates exhibited elevated Wnt pathway activity compared with the population as whole. Wnt stimulation resulted in an increase in the frequency of skeletal stem cells marked by the STRO‐1bright/Glycophorin A− phenotype. Osteogenesis was elevated in stromal cell populations arising from BMMNCs transiently stimulated by Wnt3A protein, but sustained stimulation inhibited osteogenesis in a concentration‐dependent manner. These results demonstrate that Wnt stimulation could be used as a therapeutic approach by transient targeting of stem cell populations during early fracture healing, but that inappropriate stimulation may prevent osteogenesis. Stem Cells 2016;34:418–430