Richard O.C. Oreffo
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard O.C. Oreffo.
Journal of Clinical Investigation | 1990
I. R. Garrett; Brendan F. Boyce; Richard O.C. Oreffo; Lynda F. Bonewald; J. W. Poser; Gregory R. Mundy
The mechanisms by which bone resorbing osteoclasts form and are activated by hormones are poorly understood. We show here that the generation of oxygen-derived free radicals in cultured bone is associated with the formation of new osteoclasts and enhanced bone resorption, identical to the effects seen when bones are treated with hormones such as parathyroid hormone (PTH) and interleukin 1 (IL-1). When free oxygen radicals were generated adjacent to bone surfaces in vivo, osteoclasts were also formed. PTH and IL-1-stimulated bone resorption was inhibited by both natural and recombinant superoxide dismutase, an enzyme that depletes tissues of superoxide anions. We used the marker nitroblue tetrazolium (NBT) to identify the cells that were responsible for free radical production in resorbing bones. NBT staining was detected only in osteoclasts in cultures of resorbing bones. NBT staining in osteoclasts was decreased in bones coincubated with calcitonin, an inhibitor of bone resorption. We also found that isolated avian osteoclasts stained positively for NBT. NBT staining in isolated osteoclasts was increased when the cells were incubated with bone particles, to which they attach. We confirmed the formation of superoxide anion in isolated avian osteoclasts using ferricytochrome c reduction as a method of detection. The reduction of ferricytochrome c in isolated osteoclasts was inhibited by superoxide dismutase. Our results suggest that oxygen-derived free radicals, and particularly the superoxide anion, are intermediaries in the formation and activation of osteoclasts.
Nature Materials | 2011
Rebecca J. McMurray; Nikolaj Gadegaard; P. Monica Tsimbouri; Karl Burgess; Laura E. McNamara; Rahul S. Tare; Kate Murawski; Emmajayne Kingham; Richard O.C. Oreffo; Matthew J. Dalby
There is currently an unmet need for the supply of autologous, patient-specific stem cells for regenerative therapies in the clinic. Mesenchymal stem cell differentiation can be driven by the material/cell interface suggesting a unique strategy to manipulate stem cells in the absence of complex soluble chemistries or cellular reprogramming. However, so far the derivation and identification of surfaces that allow retention of multipotency of this key regenerative cell type have remained elusive. Adult stem cells spontaneously differentiate in culture, resulting in a rapid diminution of the multipotent cell population and their regenerative capacity. Here we identify a nanostructured surface that retains stem-cell phenotype and maintains stem-cell growth over eight weeks. Furthermore, the study implicates a role for small RNAs in repressing key cell signalling and metabolomic pathways, demonstrating the potential of surfaces as non-invasive tools with which to address the stem cell niche.
Bone | 2001
Xuebin Yang; Helmtrud I. Roach; Nicholas Clarke; S. M. Howdle; Robin A. Quirk; Kevin M. Shakesheff; Richard O.C. Oreffo
The ability to generate new bone for skeletal use is a major clinical need. Biomimetic scaffolds that interact and promote osteoblast differentiation and osteogenesis offer a promising approach to the generation of skeletal tissue to resolve this major health-care issue. In this study we examine the ability of surface-modified poly(lactic acid) (PLA) films and poly(lactic-co-/glycolic acid) (PLGA) (75:25) porous structures to promote human osteoprogenitor adhesion, spreading, growth, and differentiation. Cell spreading and adhesion were examined using Cell Tracker green fluorescence and confocal microscopy. Osteogenic differentiation was confirmed with alkaline phosphatase activity as well as immunocytochemistry for type I collagen, core binding factor-1 (Cbfa-1), and osteocalcin. Poor cell growth was observed on nonmodified PLA films and PLGA scaffolds. The polymers were then coupled with RGD peptides [using poly(L-lysine), or PLL] and physical adsorption as well as PLA films presenting adsorbed fibronectin (FN). Both modifications enhanced cell attachment and spreading. On PLA-FN and PLA-PLL-GRGDS films, the osteoblast response was dose dependent (20 pmol/L to 0.2 micromol/L FN and 30 nmol/L to 30 micromol/L PLL-GRGDS) and significant at concentrations as low as 2 nmol/L FN and 30 nmol/L PLL-GRGDS. With optimal concentrations of FN or RGD, adhesion and cell spreading were comparable to tissue culture plastic serum controls. In PLGA (75:25) biodegradable porous scaffolds, coated with FN, PLL-GRGDS, or fetal calf serum for 24 h in alpha MEM alone, prior to growth in dexamethasone and ascorbate-2-phosphate for 4-6 weeks, extensive osteoblast impregnation was observed by confocal and fluorescence microscopy. Cell viability in extended culture was maintained as analyzed by expression of Cell Tracker green and negligible ethidium homodimer-1 (a marker of cell necrosis) staining. Alkaline phosphatase activity, type I collagen, Cbfa-1, and osteocalcin expression were observed by immunocytochemistry. Mineralization of collagenous matrix took place after 4 weeks, which confirmed the expression of the mature osteogenic phenotype. These observations demonstrate successful adhesion and growth of human osteoprogenitors on protein- and peptide-coupled polymer films as well as migration, expansion, and differentiation on three-dimensional biodegradable PLGA scaffolds. The use of peptides/proteins and three-dimensional structures that provide positional and environmental information indicate the potential for biomimetic structures coupled with appropriate factors in the development of protocols for de novo bone formation.
Reproduction | 2010
Catherine E. Forristal; Kate L Wright; Neil A. Hanley; Richard O.C. Oreffo; Franchesca D. Houghton
Human embryonic stem (hES) cells are routinely cultured under atmospheric, 20% oxygen tensions but are derived from embryos which reside in a 3–5% oxygen (hypoxic) environment. Maintenance of oxygen homeostasis is critical to ensure sufficient levels for oxygen-dependent processes. This study investigates the importance of specific hypoxia inducible factors (HIFs) in regulating the hypoxic responses of hES cells. We report that culture at 20% oxygen decreased hES cell proliferation and resulted in a significantly reduced expression of SOX2, NANOG and POU5F1 (OCT4) mRNA as well as POU5F1 protein compared with hypoxic conditions. HIF1A protein was not expressed at 20% oxygen and displayed only a transient, nuclear localisation at 5% oxygen. HIF2A (EPAS1) and HIF3A displayed a cytoplasmic localisation during initial hypoxic culture but translocated to the nucleus following long-term culture at 5% oxygen and were significantly upregulated compared with cells cultured at 20% oxygen. Silencing of HIF2A resulted in a significant decrease in both hES cell proliferation and POU5F1, SOX2 and NANOG protein expression while the early differentiation marker, SSEA1, was concomitantly increased. HIF3A upregulated HIF2A and prevented HIF1A expression with the knockdown of HIF3A resulting in the reappearance of HIF1A protein. In summary, these data demonstrate that a low oxygen tension is preferential for the maintenance of a highly proliferative, pluripotent population of hES cells. While HIF3A was found to regulate the expression of both HIF1A and HIF2A, it is HIF2A which regulates hES cell pluripotency as well as proliferation under hypoxic conditions.
Journal of Tissue Engineering | 2010
Laura E. McNamara; Rebecca J. McMurray; Manus Biggs; Fahsai Kantawong; Richard O.C. Oreffo; Matthew J. Dalby
Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal) stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated) and direct (force-mediated) mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.
Biochemical and Biophysical Research Communications | 1989
Richard O.C. Oreffo; Gregory R. Mundy; Saeid M. Seyedin; Lynda F. Bonewald
Although TGF beta is unquestionably an important growth regulatory polypeptide with effects on many cell types, the cellular mechanisms which release it from the binding proteins which mask its biological activity are not well understood. Here we show that when isolated osteoclasts are activated, they release active TGF beta from the latent TGF beta complex produced by bone organ cultures. Since active TGF beta has powerful inhibitory effects on osteoclast formation and bone resorption and stimulates osteoblast activity, is present in abundant amounts in the bone matrix and is released during hormone-stimulated osteoclastic bone resorption, the activation of TGF beta by stimulated osteoclasts may be an important regulatory step in normal bone remodeling.
Bone | 1999
S.R Park; Richard O.C. Oreffo; J T Triffitt
Information on the interconversion potential of adipocytes and other end cells characteristic of the stromal fibroblastic cell lineages, key in the understanding of bone turnover in metabolic diseases such as osteoporosis, is limited. The object of the present study was: i) to isolate relatively pure populations of adipocytes from human bone marrow; ii) to clone single adipocytes from these populations; and iii) to examine in vitro the interconversion potential of the progeny of these single-cloned adipocytes between the osteogenic and adipogenic phenotypes. Adipogenic colonies were isolated from the low-density floating fraction of normal bone marrow cells cultured in adipogenic media for 4 days. Single adipocytes were isolated and cloned by limiting dilution. Cloned adipocytes were found to dedifferentiate into fibroblast-like cells, and subsequently to differentiate into two morphologically distinct cell types: osteoblasts and adipocytes in appropriate culture systems. The adipocytic phenotype was confirmed by morphology, oil red O staining, and immunocytochemistry using antiserum to aP2. The osteogenic phenotype was confirmed by alkaline phosphatase, osteocalcin immunostaining using specific osteocalcin antiserum, and formation of mineralized cell aggregates. These findings demonstrate the extent of plasticity between the differentiation of adipocytic and osteogenic cells in human bone marrow stromal cell cultures. We have shown the ability of isolated clonal adipogenic cells to redifferentiate into cells of the osteogenic and adipogenic lineage and the interconversion potential of human marrow stromal cells in vitro. These results provide further evidence that the osteogenic and adipogenic cells share a common multipotential precursor.
Bone | 2002
David W. Green; Dominic M. Walsh; Stephen Mann; Richard O.C. Oreffo
Synthetic bone replacement materials are now widely used in orthopedics. However, to date, replication of trabecular bone structure and mechanical competence has proved elusive. Maximization of bone tissue attachment to replacement materials requires a highly organized porous structure for tissue integration and a template for assembly, combined with structural properties analogous to living bone. Natural structural biomaterials provide an abundant source of novel bone replacements. Animal skeletons have been designed through optimization by natural selection to physically support and physiologically maintain diverse tissue types encompassing a variety of functions. These skeletons possess structural properties that provide support for the complete reconstruction and regeneration of ectodermal, mesodermal, and bone tissues derived from animal and human and are thus suited to a diversity of tissue engineering applications. Increased understanding of biomineralization has initiated developments in biomimetic synthesis with the generation of synthetic biomimetic materials fabricated according to biological principles and processes of self-assembly and self-organization. The synthesis of complex inorganic forms, which mimic natural structures, offers exciting avenues for the chemical construction of macrostructures and a new generation of biologically and structurally related bone analogs for tissue engineering.
Biomaterials | 2010
Janos M. Kanczler; Patrick J. Ginty; Lisa J. White; Nicholas Clarke; Steven M. Howdle; Kevin M. Shakesheff; Richard O.C. Oreffo
Regenerating bone tissue involves complex, temporal and coordinated signal cascades of which bone morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF(165)) play a prominent role. The aim of this study was to determine if the delivery of human bone marrow stromal cells (HBMSC) seeded onto VEGF(165)/BMP-2 releasing composite scaffolds could enhance the bone regenerative capability in a critical sized femur defect. Alginate-VEGF(165)/P(DL)LA-BMP-2 scaffolds were fabricated using a supercritical CO(2) mixing technique and an alginate entrapment protocol. Increased release of VEGF(165) (750.4+/-596.8 rho g/ml) compared to BMP-2 (136.9+/-123.4 r hog/ml) was observed after 7-days in culture. Thereafter, up till 28 days, an increased rate of release of BMP-2 compared to VEGF(165) was observed. The alginate-VEGF(165)/P(DL)LA-BMP-2+HBMSC group showed a significant increase in the quantity of regenerated bone compared to the alginate-VEGF(165)/P(DL)LA-BMP-2 and alginate/P(DL)LA groups respectively in a critical sized femur defect study as indices measured by microCT. Histological examination confirmed significant new endochondral bone matrix in the HBMSC seeded alginate-VEGF(165)/P(DL)LA-BMP-2 defect group in comparison to the other groups. These studies demonstrate the ability to deliver a combination of HBMSC with angiogenic and osteogenic factors released from biodegradable scaffold composites enhances the repair and regeneration of critical sized bone defects.
Stem Cell Reviews and Reports | 2005
Richard O.C. Oreffo; C Cooper; Chris Mason; Mark Clements
The tremendous capacity of bone to regenerate is indicative of the presence of stem cells with the capability, by definition, to self-renew as well as to give rise to daughter cells. These primitive progenitors, termed mesenchymal stem cells or bone marrow stromal stem cells, exist postnatally, and are multipotent with the ability to generate cartilage, bone, muscle, tendon, ligament, and fat. Given the demographic challenge of an ageing population, the development of strategies to exploit the potential of stem cells to augment bone formation to replace or restore the function of traumatized, diseased, or degenerated bone is a major clinical and socioeconomic need. Owing to the developmental plasticity of mesenchymal stem cells, there is great interest in their application to replace damaged tissues. Combined with modern advances in gene therapy and tissue engineering, they have the potential to improve the quality of life for many. Critical in the development of this field will be an understanding of the phenotype, plasticity, and potentiality of these cells and the tempering of patients’ expectations driven by commercial and media hype to match current laboratory and clinical observations.