Nicholas G. Moss
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicholas G. Moss.
Journal of Experimental Medicine | 2007
Eva Schmelzer; Lili Zhang; Andrew James Bruce; Eliane Wauthier; John W. Ludlow; Hsin-lei Yao; Nicholas G. Moss; Alaa Melhem; Randall McClelland; William Turner; Michael Kulik; Sonya Sherwood; Tommi Tallheden; Nancy Cheng; Mark E. Furth; Lola M. Reid
Human hepatic stem cells (hHpSCs), which are pluripotent precursors of hepatoblasts and thence of hepatocytic and biliary epithelia, are located in ductal plates in fetal livers and in Canals of Hering in adult livers. They can be isolated by immunoselection for epithelial cell adhesion molecule–positive (EpCAM+) cells, and they constitute ∼0.5–2.5% of liver parenchyma of all donor ages. The self-renewal capacity of hHpSCs is indicated by phenotypic stability after expansion for >150 population doublings in a serum-free, defined medium and with a doubling time of ∼36 h. Survival and proliferation of hHpSCs require paracrine signaling by hepatic stellate cells and/or angioblasts that coisolate with them. The hHpSCs are ∼9 μm in diameter, express cytokeratins 8, 18, and 19, CD133/1, telomerase, CD44H, claudin 3, and albumin (weakly). They are negative for α-fetoprotein (AFP), intercellular adhesion molecule (ICAM) 1, and for markers of adult liver cells (cytochrome P450s), hemopoietic cells (CD45), and mesenchymal cells (vascular endothelial growth factor receptor and desmin). If transferred to STO feeders, hHpSCs give rise to hepatoblasts, which are recognizable by cordlike colony morphology and up-regulation of AFP, P4503A7, and ICAM1. Transplantation of freshly isolated EpCAM+ cells or of hHpSCs expanded in culture into NOD/SCID mice results in mature liver tissue expressing human-specific proteins. The hHpSCs are candidates for liver cell therapies.
Hepatology | 2010
Yunfang Wang; Hsin lei Yao; Cai Bin Cui; Eliane Wauthier; Claire Barbier; Martin J. Costello; Nicholas G. Moss; Mitsuo Yamauchi; Marnisa Sricholpech; David A. Gerber; Elizabeth G. Loboa; Lola M. Reid
The differentiation of embryonic or determined stem cell populations into adult liver fates under known conditions yields cells with some adult‐specific genes but not others, aberrant regulation of one or more genes, and variations in the results from experiment to experiment. We tested the hypothesis that sets of signals produced by freshly isolated, lineage‐dependent mesenchymal cell populations would yield greater efficiency and reproducibility in driving the differentiation of human hepatic stem cells (hHpSCs) into adult liver fates. The subpopulations of liver‐derived mesenchymal cells, purified by immunoselection technologies, included (1) angioblasts, (2) mature endothelia, (3) hepatic stellate cell precursors, (4) mature stellate cells (pericytes), and (5) myofibroblasts. Freshly immunoselected cells of each of these subpopulations were established in primary cultures under wholly defined (serum‐free) conditions that we developed for short‐term cultures and were used as feeders with hHpSCs. Feeders of angioblasts yielded self‐replication, stellate cell precursors caused lineage restriction to hepatoblasts, mature endothelia produced differentiation into hepatocytes, and mature stellate cells and/or myofibroblasts resulted in differentiation into cholangiocytes. Paracrine signals produced by the different feeders were identified by biochemical, immunohistochemical, and quantitative reverse‐transcription polymerase chain reaction analyses, and then those signals were used to replace the feeders in monolayer and three‐dimensional cultures to elicit the desired biological responses from hHpSCs. The defined paracrine signals were proved to be able to yield reproducible responses from hHpSCs and to permit differentiation into fully mature and functional parenchymal cells. Conclusion: Paracrine signals from defined mesenchymal cell populations are important for the regulation of stem cell populations into specific adult fates; this finding is important for basic and clinical research as well as industrial investigations. (HEPATOLOGY 2010;)
Annals of the New York Academy of Sciences | 2006
R. Susick; Nicholas G. Moss; Hiroshi Kubota; E. Lecluyse; G. Hamilton; T. Luntz; J. Ludlow; Jeffrey H. Fair; David A. Gerber; K. Bergstrand; J. White; A. Bruce; O. Drury; Sanjeev Gupta; Lola M. Reid
Abstract: Liver cell therapies, including liver cell transplantation and bioartificial livers, are being developed as alternatives to whole liver transplantation for some patients with severe liver dysfunction. Hepatic progenitors are proposed as ideal cells for use in these liver cell therapies given their ability to expand extensively, differentiate into all mature liver cells, have minimal immunogenicity, be cryopreservable, and reconstitute liver tissue when transplanted. We summarize our ongoing efforts to develop clinical programs of hepatic progenitor cell therapies with a focus on hepatic stem cell biology and strategies that have emerged in analyzing that biology.
Shock | 1999
Zhi Zhong; Nobuyuki Enomoto; Henry D. Connor; Nicholas G. Moss; Ronald P. Mason; Ronald G. Thurman
This study investigated the effect of glycine on hemorrhagic shock in the rat. Rats were bled to maintain mean arterial pressure at 30-35 mm Hg for 1 h and subsequently resuscitated with 60% shed blood and lactated Ringers solution. Only 20% of rats receiving saline just prior to resuscitation survived 72 h after shock. Survival was increased by glycine (11.2-90.0 mg/kg, i.v.) in a dose-dependent manner (half-maximal effect = 25 mg/kg) and reached maximal values of 78% at 45 mg/kg. Eighteen hours after resuscitation, creatinine phosphokinase increased 23-fold, transaminases increased 33-fold, and creatinine was elevated 2.4-fold, indicating injury to the heart, liver, and kidney, respectively. Pulmonary edema, leukocyte infiltration, and hemorrhage were also observed. In the kidney, proximal tubular necrosis, leukocyte infiltration, and severe hemorrhage in the outer medullary area occurred in rats receiving saline. Glycine reduced these pathological alterations significantly. It has been reported that oxidative stress and tumor necrosis factor(TNF)-alpha-production are involved in the pathophysiology of multiple-organ injury after shock. In this study, free radical production was increased 4-fold during shock, an effect blocked largely by glycine. Increases in intracellular calcium and production of TNF-alpha by isolated Kupffer cells stimulated by endotoxin were elevated significantly by hemorrhagic shock, alterations which were totally prevented by glycine. Taken together, it is concluded that glycine reduces organ injury and mortality caused by hemorrhagic shock by preventing free radical production and TNF-alpha formation.
Methods in Cell Biology | 2008
Eliane Wauthier; Eva Schmelzer; William Turner; Lili Zhang; Ed LeCluyse; Joseph Ruiz; Rachael Turner; Mark E. Furth; Hiroshi Kubota; Oswaldo Lozoya; Claire Barbier; Randall McClelland; Hsin lei Yao; Nicholas G. Moss; Andrew T. Bruce; John W. Ludlow; Lola M. Reid
Publisher Summary This chapter discusses hepatic stem cells (HpSCs) and provides protocols on HpSCs, especially human hepatic stem cells (hHpSCs). It also includes development of a serum-free, hormonally defined medium (HDM), preparation of tissue extracts enriched in extracellular matrix, and methods to design biodegradable, polylactide scaffoldings or microcarriers in ways appropriate for progenitors and use of bioreactors. There has been recognition that the epithelial–mesenchymal relationship is lineage dependent. Epithelial stem cells are partnered with mesenchymal stem cells, and their differentiation is co-ordinate. In the liver, the lineages begin with the HpSCs paired with their mesenchymal partners and angioblasts that interact with multiple forms of paracrine signals. These two give rise to descendents in a stepwise, lineage-dependent fashion and their descendents remain in a partnership throughout differentiation. Tissue engineering involves the mimicking of the livers epithelial–mesenchymal relationship with recognition of the lineage-dependent phenomena. Serum-free, HDM have been found to select for parenchymal cells even when the cells are on tissue culture plastic. Tissue-specific gene expression is improved in cultures under serum-free conditions and especially with serum-free medium supplemented with only the specific hormones needed to drive expression of a given tissue-specific gene.
Endocrinology | 2008
Xun Qian; Nicholas G. Moss; Robert C. Fellner; Michael F. Goy
The intestine and kidney are linked by a mechanism that increases salt excretion in response to salt intake. The peptide uroguanylin (UGn) is thought to mediate this signaling axis. Therefore, it was surprising to find (as reported in a companion publication) that UGn is stored in the intestine and circulates in the plasma almost exclusively in the form of its biologically inactive propeptide precursor, prouroguanylin (proUGn), and, furthermore, that infused proUGn leads to natriuretic activity. Here, we investigate the fate of circulating proUGn. Kinetic studies show rapid renal clearance of radiolabeled propeptide. Radiolabel accumulates at high specific activity in kidney (relative to other organs) and urine (relative to plasma). The principal metabolites found in kidney homogenates are free cysteine and methionine. In contrast, urine contains cysteine, methionine, and three other radioactive peaks, one comigrating with authentic rat UGn15. Interestingly, proUGn is not converted to these or other metabolites in plasma, indicating that circulating proUGn is not processed before entering the kidney. Therefore, our findings suggest that proUGn is the true endocrine agent released in response to salt intake and that the response of the kidney is dependent on conversion of the propeptide to an active form after it reaches the renal tubules. Furthermore, proUGn metabolites (other than small amounts of cysteine and methionine) are not returned to the circulation from the kidney or any other organ. Thus, to respond to proUGn released from the gut, any target organ must use a local mechanism for production of active peptide.
Hypertension | 2009
Nicholas G. Moss; Dorothy A. Riguera; Robert Solinga; Marco Kessler; Daniel P. Zimmer; William J. Arendshorst; Mark G. Currie; Michael F. Goy
The peptide uroguanylin regulates electrolyte transport in the intestine and kidney. Human uroguanylin has 2 conformations that can be stably isolated because of their slow interconversion rate. The A isomer potently activates the guanylate cyclase C receptor found primarily in the intestine. The B isomer, by contrast, is a very weak agonist of this receptor, leading to a widely held assumption that it is physiologically irrelevant. We show here, however, that human uroguanylin B has potent natriuretic activity in the kidney. Interestingly, uroguanylin A and B both induce saluretic responses, but the activity profiles for the 2 peptides differ markedly. The uroguanylin B dose-response curve is sigmoidal with a threshold dose of ≈10 nmol/kg of body weight, whereas uroguanylin A has a comparable threshold but a bell-shaped dose-response curve. In addition, our study indicates a unique interplay between the A and B isoforms, such that the A form at high concentrations antagonizes the natriuretic action of the B form. These data show that the kidney contains a uroguanylin receptor of which the pharmacological profile does not match that of the well-defined intestinal uroguanylin receptor (guanylate cyclase C), an observation consistent with previous studies showing that the kidney of the guanylate cyclase C knockout mouse remains responsive to uroguanylin. The results presented here also support the unconventional notion that distinct conformations of a single endocrine peptide can elicit different responses in different tissues.
American Journal of Physiology-renal Physiology | 2011
Xun Qian; Nicholas G. Moss; Robert C. Fellner; Bonnie Taylor-Blake; Michael F. Goy
The peptide uroguanylin (Ugn) regulates enteric and renal electrolyte transport. Previous studies have shown that Ugn and its receptor GC-C (a ligand-activated guanylate cyclase) are abundant in the intestine. Less is known about Ugn and GC-C expression in the kidney. Here, we identify a 9.4-kDa polypeptide in rat kidney extracts that appears, based on its biochemical and immunological properties, to be authentic prouroguanylin (proUgn). This propeptide is relatively plentiful in the kidney (~16% of intestinal levels), whereas its mRNA is marginally present (<1% of intestinal levels), and free Ugn peptide levels are below detection limits (<0.4% of renal proUgn levels). The paucity of preproUgn-encoding mRNA and free Ugn peptide raises the possibility that the kidney might absorb intact proUgn from plasma, where the concentration of propeptide greatly exceeds that of Ugn. However, immunocytochemical analysis reveals that renal proUgn is found exclusively in distal tubular segments, sites previously shown not to accumulate radiolabeled proUgn after intravascular infusions. Thus proUgn appears to be synthesized within the kidney, but the factors that determine its abundance (rates of transcription, translation, processing, and secretion) must be balanced quite differently than in the gut. Surprisingly, we also find negligible expression of GC-C in the rat kidney, a result confirmed both by RT-PCR and by functional assays that measure Ugn-activated cGMP synthesis. Taken together, these data provide evidence for an intrarenal Ugn system that differs from the well-described intestinal system in its regulatory mechanisms and in the receptor targeted by the peptide.
American Journal of Physiology-renal Physiology | 2013
Nicholas G. Moss; Paul A. Vogel; Tayler E. Kopple; William J. Arendshorst
The present renal hemodynamic study tested the hypothesis that CD38 and superoxide anion (O2(·-)) participate in the vasoconstriction produced by activation of thromboxane prostanoid (TP) receptors in the mouse kidney. CD38 is the major mammalian ADP-ribosyl cyclase contributing to vasomotor tone through the generation of cADP-ribose, a second messenger that activates ryanodine receptors to release Ca(2+) from the sarcoplasmic reticulum in vascular smooth muscle cells. We evaluated whether the stable thromboxane mimetic U-46619 causes less pronounced renal vasoconstriction in CD38-deficient mice and the involvement of O2(·-) in U-46619-induced renal vasoconstriction. Our results indicate that U-46619 activation of TP receptors causes renal vasoconstriction in part by activating cADP-ribose signaling in renal resistance arterioles. Based on maximal renal blood flow and renal vascular resistance responses to bolus injections of U-46619, CD38 contributes 30-40% of the TP receptor-induced vasoconstriction. We also found that the antioxidant SOD mimetic tempol attenuated the magnitude of vasoconstriction by U-46619 in both groups of mice, suggesting mediation by O2(·-). The degree of tempol blockage of U-46619-induced renal vasoconstriction was greater in wild-type mice, attenuating renal vasoconstriction by 40% compared with 30% in CD38-null mice. In other experiments, U-46619 rapidly stimulated O2(·-) production (dihydroethidium fluorescence) in isolated mouse afferent arterioles, an effect abolished by tempol. These observations provide the first in vivo demonstration of CD38 and O2(·-) involvement in the vasoconstrictor effects of TP receptor activation in the kidney and in vitro evidence for TP receptor stimulation of O2(·-) production by the afferent arteriole.
American Journal of Physiology-renal Physiology | 2010
Nicholas G. Moss; Dorothy A. Riguera; Robert C. Fellner; Christopher Cazzolla; Michael F. Goy
The peptide uroguanylin (Ugn) is stored and released as a propeptide (proUgn) by enterochromaffin cells in the intestine, and converted to Ugn and other metabolites in the renal tubules. Both proUgn and Ugn are natriuretic, although the response to proUgn is thought to depend on its conversion to Ugn within nephrons. To assess the efficiency of intrarenal conversion of proUgn to Ugn, we measured urinary Ugn excretion in rats following intravenous infusions of proUgn or Ugn. Infusion of 2 and 10 nmol proUgn/kg body wt increased plasma proUgn concentration from 2.2 ± 0.3 to 5.6 ± 1.3 pmol/ml and to 37 ± 9.6 pmol/ml, respectively. No proUgn was detected in urine before, during, or after proUgn infusions. These two proUgn infusion doses resulted in total Ugn recovery in urine of 162 ± 64 and 206 ± 39 pmol/kg body wt (9 and 2% of the infused amount, respectively). By contrast, the same molar amounts of Ugn resulted in 1,009 ± 477 and 5,352 ± 2,133 pmol/kg body wt of Ugn in urine (recoveries of ∼50%). Unexpectedly, comparisons of natriuretic dose-response curves for each peptide showed proUgn to be about five times more potent than Ugn, despite the relatively modest amount of Ugn generated from infused proUgn. In addition, both peptides were antikaliuretic at low doses, but in this case Ugn showed greater potency than proUgn. These data do not support Ugn as the primary active principle of proUgn for regulation of renal sodium excretion. Instead, an alternative peptide fragment produced from proUgn may be responsible for natriuretic activity in the kidney, whereas Ugn itself may play an antikaliuretic role.