Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Hardcastle is active.

Publication


Featured researches published by Nicholas Hardcastle.


Radiation Oncology | 2012

A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy

Nicholas Hardcastle; Wolfgang A. Tomé; Donald M. Cannon; Charlotte L. Brouwer; Paul W. H. Wittendorp; Nesrin Dogan; Matthias Guckenberger; Stephane Allaire; Yogish Mallya; Prashant Kumar; Markus Oechsner; Anne Richter; Shiyu Song; Michael J. Myers; Buelent Polat; K Bzdusek

BackgroundAdaptive Radiotherapy aims to identify anatomical deviations during a radiotherapy course and modify the treatment plan to maintain treatment objectives. This requires regions of interest (ROIs) to be defined using the most recent imaging data. This study investigates the clinical utility of using deformable image registration (DIR) to automatically propagate ROIs.MethodsTarget (GTV) and organ-at-risk (OAR) ROIs were non-rigidly propagated from a planning CT scan to a per-treatment CT scan for 22 patients. Propagated ROIs were quantitatively compared with expert physician-drawn ROIs on the per-treatment scan using Dice scores and mean slicewise Hausdorff distances, and center of mass distances for GTVs. The propagated ROIs were qualitatively examined by experts and scored based on their clinical utility.ResultsGood agreement between the DIR-propagated ROIs and expert-drawn ROIs was observed based on the metrics used. 94% of all ROIs generated using DIR were scored as being clinically useful, requiring minimal or no edits. However, 27% (12/44) of the GTVs required major edits.ConclusionDIR was successfully used on 22 patients to propagate target and OAR structures for ART with good anatomical agreement for OARs. It is recommended that propagated target structures be thoroughly reviewed by the treating physician.


Radiation Oncology | 2013

Accuracy of deformable image registration for contour propagation in adaptive lung radiotherapy

Nicholas Hardcastle; Wouter van Elmpt; Dirk De Ruysscher; K Bzdusek; Wolfgang A. Tomé

BackgroundDeformable image registration (DIR) is an attractive method for automatic propagation of regions of interest (ROIs) in adaptive lung radiotherapy. This study investigates DIR for automatic contour propagation in adaptive Non Small Cell Lung Carcinoma patients.MethodsPre and mid-treatment fan beam 4D-kVCT scans were taken for 17 NSCLC patients. Gross tumour volumes (GTV), nodal-GTVs, lungs, esophagus and spinal cord were delineated on all kVCT scans. ROIs were propagated from pre- to mid-treatment images using three DIR algorithms. DIR-propagated ROIs were compared with physician-drawn ROIs on the mid-treatment scan using the Dice score and the mean slicewise Hausdorff distance to agreement (MSHD). A physician scored the DIR-propagated ROIs based on clinical utility.ResultsGood agreement between the DIR-propagated and physician drawn ROIs was observed for the lungs and spinal cord. Agreement was not as good for the nodal-GTVs and esophagus, due to poor soft-tissue contrast surrounding these structures. 96% of OARs and 85% of target volumes were scored as requiring no or minor adjustments.ConclusionsDIR has been shown to be a clinically useful method for automatic contour propagation in adaptive radiotherapy however thorough assessment of propagated ROIs by the treating physician is recommended.


Physics in Medicine and Biology | 2010

In vivo real-time rectal wall dosimetry for prostate radiotherapy

Nicholas Hardcastle; Dean L Cutajar; Peter E Metcalfe; Michael L. F Lerch; Vladimir Perevertaylo; Wolfgang A. Tomé; Anatoly B. Rosenfeld

Rectal balloons are used in external beam prostate radiotherapy to provide reproducible anatomy and rectal dose reductions. This is an investigation into the combination of a MOSFET radiation detector with a rectal balloon for realtime in vivo rectal wall dosimetry. The MOSFET used in the study is a radiation detector that provides a water equivalent depth of measurement of 70 microm. Two MOSFETs were combined in a face-to-face orientation. The reproducibility, sensitivity and angular dependence were measured for the dual MOSFET in a 6 MV photon beam. The dual MOSFET was combined with a rectal balloon and irradiated with hypothetical prostate treatments in a phantom. The anterior rectal wall dose was measured in real time and compared with the planning system calculated dose. The dual MOSFET showed angular dependence within +/-2.5% in the azimuth and +2.5%/-4% in the polar axes. When compared with an ion chamber measurement in a phantom, the dual MOSFET agreed within 2.5% for a range of radiation path lengths and incident angles. The dual MOSFET had reproducible sensitivity for fraction sizes of 2-10 Gy. For the hypothetical prostate treatments the measured anterior rectal wall dose was 2.6 and 3.2% lower than the calculated dose for 3DCRT and IMRT plans. This was expected due to limitations of the dose calculation method used at the balloon cavity interface. A dual MOSFET combined with a commercial rectal balloon was shown to provide reproducible measurements of the anterior rectal wall dose in real time. The measured anterior rectal wall dose agreed with the expected dose from the treatment plan for 3DCRT and IMRT plans. The dual MOSFET could be read out in real time during the irradiation, providing the capability for real-time dose monitoring of the rectal wall dose during treatment.


Medical Physics | 2011

On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation

Edward T. Bender; Nicholas Hardcastle; Wolfgang A. Tomé

PURPOSE Deformable image registration (DIR) is necessary for accurate dose accumulation between multiple radiotherapy image sets. DIR algorithms can suffer from inverse and transitivity inconsistencies. When using deformation vector fields (DVFs) that exhibit inverse-inconsistency and are nontransitive, dose accumulation on a given image set via different image pathways will lead to different accumulated doses. The purpose of this study was to investigate the dosimetric effect of and propose a postprocessing solution to reduce inverse consistency and transitivity errors. METHODS Four MVCT images and four phases of a lung 4DCT, each with an associated calculated dose, were selected for analysis. DVFs between all four images in each data set were created using the Fast Symmetric Demons algorithm. Dose was accumulated on the fourth image in each set using DIR via two different image pathways. The two accumulated doses on the fourth image were compared. The inverse consistency and transitivity errors in the DVFs were then reduced. The dose accumulation was repeated using the processed DVFs, the results of which were compared with the accumulated dose from the original DVFs. To evaluate the influence of the postprocessing technique on DVF accuracy, the original and processed DVF accuracy was evaluated on the lung 4DCT data on which anatomical landmarks had been identified by an expert. RESULTS Dose accumulation to the same image via different image pathways resulted in two different accumulated dose results. After the inverse consistency errors were reduced, the difference between the accumulated doses diminished. The difference was further reduced after reducing the transitivity errors. The postprocessing technique had minimal effect on the accuracy of the DVF for the lung 4DCT images. CONCLUSIONS This study shows that inverse consistency and transitivity errors in DIR have a significant dosimetric effect in dose accumulation; Depending on the image pathway taken to accumulate the dose, different results may be obtained. A postprocessing technique that reduces inverse consistency and transitivity error is presented, which allows for consistent dose accumulation regardless of the image pathway followed.


Medical Dosimetry | 2011

Comparison of prostate IMRT and VMAT biologically optimised treatment plans.

Nicholas Hardcastle; Wolfgang A. Tomé; Kerwyn Foo; Andrew Alexis Miller; Martin G Carolan; Peter E Metcalfe

Recently, a new radiotherapy delivery technique has become clinically available--volumetric modulated arc therapy (VMAT). VMAT is the delivery of IMRT while the gantry is in motion using dynamic leaf motion. The perceived benefit of VMAT over IMRT is a reduction in delivery time. In this study, VMAT was compared directly with IMRT for a series of prostate cases. For 10 patients, a biologically optimized seven-field IMRT plan was compared with a biologically optimized VMAT plan using the same planning objectives. The Pinnacle RTPS was used. The resultant target and organ-at-risk dose-volume histograms (DVHs) were compared. The normal tissue complication probability (NTCP) for the IMRT and VMAT plans was calculated for 3 model parameter sets. The delivery efficiency and time for the IMRT and VMAT plans was compared. The VMAT plans resulted in a statistically significant reduction in the rectal V25Gy parameter of 8.2% on average over the IMRT plans. For one of the NTCP parameter sets, the VMAT plans had a statistically significant lower rectal NTCP. These reductions in rectal dose were achieved using 18.6% fewer monitor units and a delivery time reduction of up to 69%. VMAT plans resulted in reductions in rectal doses for all 10 patients in the study. This was achieved with significant reductions in delivery time and monitor units. Given the target coverage was equivalent, the VMAT plans were superior.


Medical Physics | 2008

Dosimetric verification of helical tomotherapy for total scalp irradiation.

Nicholas Hardcastle; E Soisson; Peter E Metcalfe; Anatoly B. Rosenfeld; Wolfgang A. Tomé

Total scalp irradiation is a treatment technique used for a variety of superficial malignancies. Helical tomotherapy is an effective technique used for total scalp irradiation. Recent published work has shown the TomoTherapy planning system to overestimate the superficial dose. In this study, the superficial doses for a helical tomotherapy total scalp irradiation have been measured on an anthropomorphic phantom using radiochromic and radiographic film as well as a new skin dosimeter, the MOSkin. The superficial dose was found to be accurately calculated by the TomoTherapy planning system. This is in contrast to recent reports, probably due to a combination of the smaller dose grid resolution used in planning and this particular treatment primarily consisting of beamlets tangential to the scalp. The superficial dose was found to increase from 33.6to41.2Gy and 36.0to42.0Gy over the first 2mm depth in the phantom in selected regions of the PTV, measured with radiochromic film. The prescription dose was 40Gy. The superficial dose was at the prescription dose or higher in some regions due to the bolus effect of the thermoplastic head mask and the head rest used to aid treatment setup. It is suggested that to achieve the prescription dose at the surface (⩽2mm depth) bolus or a custom thermoplastic helmet is used.


Medical Physics | 2011

High dose per fraction dosimetry of small fields with Gafchromic EBT2 film

Nicholas Hardcastle; Amar Basavatia; Adam Bayliss; Wolfgang A. Tomé

PURPOSE Small field dosimetry is prone to uncertainties due to the lack of electronic equilibrium and the use of the correct detector size relative to the field size measured. It also exhibits higher sensitivity to setup errors as well as large variation in output with field size and shape. Radiochromic film is an attractive method for reference dosimetry in small fields due to its ability to provide 2D dose measurements while having minimal impact on the dose distribution. Gafchromic EBT2 has a dose range of up to 40 Gy; therefore, it could potentially be useful for high dose reference dosimetry with high spatial resolution. This is a requirement in stereotactic radiosurgery deliveries, which deliver high doses per fraction to small targets. METHODS Targets of 4 mm and 12 mm diameters were treated to a minimum peripheral dose of 21 Gy prescribed to 80% of the maximum dose in one fraction. Target doses were measured with EBT2 film (both targets) and an ion chamber (12 mm target only). Measured doses were compared with planned dose distributions using profiles through the target and minimum peripheral dose coverage. RESULTS The measured target doses and isodose coverage agreed with the planned dose within +/-1 standard deviation of three measurements, which were 2.13% and 2.5% for the 4 mm and 12 mm targets, respectively. CONCLUSIONS EBT2 film is a feasible dosimeter for high dose per fraction reference 2D dosimetry.


Physics in Medicine and Biology | 2011

Surface dosimetry for breast radiotherapy in the presence of immobilization cast material

Andrew H Kelly; Nicholas Hardcastle; Peter E Metcalfe; Dean L Cutajar; Alexandra Quinn; Kerwyn Foo; Michael Cardoso; Sheree Barlin; Anatoly B. Rosenfeld

Curative breast radiotherapy typically leaves patients with varying degrees of cosmetic damage. One problem interfering with cosmetically acceptable breast radiotherapy is the external contour for large pendulous breasts which often results in high doses to skin folds. Thermoplastic casts are often employed to secure the breasts to maintain setup reproducibility and limit the presence of skin folds. This paper aims to determine changes in surface dose that can be attributed to the use of thermoplastic immobilization casts. Skin dose for a clinical hybrid conformal/IMRT breast plan was measured using radiochromic film and MOSFET detectors at a range of water equivalent depths representative of the different skin layers. The radiochromic film was used as an integrating dosimeter, while the MOSFETs were used for real-time dosimetry to isolate the contribution of skin dose from individual IMRT segments. Strips of film were placed at various locations on the breast and the MOSFETs were used to measure skin dose at 16 positions spaced along the film strips for comparison of data. The results showed an increase in skin dose in the presence of the immobilization cast of up to 45.7% and 62.3% of the skin dose without the immobilization cast present as measured with Gafchromic EBT film and MOSFETs, respectively. The increase in skin dose due to the immobilization cast varied with the angle of beam incidence and was greatest when the beam was normally incident on the phantom. The increase in surface dose with the immobilization cast was greater under entrance dose conditions compared to exit dose conditions.


Radiotherapy and Oncology | 2016

The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.

Jeremy T. Booth; Vincent Caillet; Nicholas Hardcastle; Ricky O’Brien; Kathryn Szymura; Charlene Crasta; Benjamin Harris; Carol Haddad; Thomas Eade; P Keall

BACKGROUND AND PURPOSE Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. MATERIALS AND METHODS A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. RESULTS Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm3) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). CONCLUSION An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy.


International Journal of Radiation Oncology Biology Physics | 2015

Ventilation/Perfusion Positron Emission Tomography--Based Assessment of Radiation Injury to Lung.

Shankar Siva; Nicholas Hardcastle; Tomas Kron; Mathias Bressel; Jason Callahan; Michael MacManus; Mark Shaw; Nikki Plumridge; Rodney J. Hicks; Daniel P. Steinfort; David Ball; Michael S. Hofman

PURPOSE To investigate (68)Ga-ventilation/perfusion (V/Q) positron emission tomography (PET)/computed tomography (CT) as a novel imaging modality for assessment of perfusion, ventilation, and lung density changes in the context of radiation therapy (RT). METHODS AND MATERIALS In a prospective clinical trial, 20 patients underwent 4-dimensional (4D)-V/Q PET/CT before, midway through, and 3 months after definitive lung RT. Eligible patients were prescribed 60 Gy in 30 fractions with or without concurrent chemotherapy. Functional images were registered to the RT planning 4D-CT, and isodose volumes were averaged into 10-Gy bins. Within each dose bin, relative loss in standardized uptake value (SUV) was recorded for ventilation and perfusion, and loss in air-filled fraction was recorded to assess RT-induced lung fibrosis. A dose-effect relationship was described using both linear and 2-parameter logistic fit models, and goodness of fit was assessed with Akaike Information Criterion (AIC). RESULTS A total of 179 imaging datasets were available for analysis (1 scan was unrecoverable). An almost perfectly linear negative dose-response relationship was observed for perfusion and air-filled fraction (r(2)=0.99, P<.01), with ventilation strongly negatively linear (r(2)=0.95, P<.01). Logistic models did not provide a better fit as evaluated by AIC. Perfusion, ventilation, and the air-filled fraction decreased 0.75 ± 0.03%, 0.71 ± 0.06%, and 0.49 ± 0.02%/Gy, respectively. Within high-dose regions, higher baseline perfusion SUV was associated with greater rate of loss. At 50 Gy and 60 Gy, the rate of loss was 1.35% (P=.07) and 1.73% (P=.05) per SUV, respectively. Of 8/20 patients with peritumoral reperfusion/reventilation during treatment, 7/8 did not sustain this effect after treatment. CONCLUSIONS Radiation-induced regional lung functional deficits occur in a dose-dependent manner and can be estimated by simple linear models with 4D-V/Q PET/CT imaging. These findings may inform future studies of functional lung avoidance using V/Q PET/CT.

Collaboration


Dive into the Nicholas Hardcastle's collaboration.

Top Co-Authors

Avatar

Tomas Kron

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Wolfgang A. Tomé

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shankar Siva

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Ball

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

P Keall

University of Sydney

View shared research outputs
Top Co-Authors

Avatar

Michael S. Hofman

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy T. Booth

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar

Mathias Bressel

Peter MacCallum Cancer Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge