Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Amoroso is active.

Publication


Featured researches published by Nicholas J. Amoroso.


Biomaterials | 2011

Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber - extracellular matrix hydrogel biohybrid scaffold

Yi Hong; Alexander Huber; Keisuke Takanari; Nicholas J. Amoroso; Ryotaro Hashizume; Stephen F. Badylak; William R. Wagner

A biohybrid composite consisting of extracellular matrix (ECM) gel from porcine dermal tissue and biodegradable elastomeric fibers was generated and evaluated for soft tissue applications. ECM gel possesses attractive biocompatibility and bioactivity with weak mechanical properties and rapid degradation, while electrospun biodegradable poly(ester urethane)urea (PEUU) has good mechanical properties but limited cellular infiltration and tissue integration. A concurrent gel electrospray/polymer electrospinning method was employed to create ECM gel/PEUU fiber composites with attractive mechanical properties, including high flexibility and strength. Electron microscopy revealed a structure of interconnected fibrous layers embedded in ECM gel. Tensile mechanical properties could be tuned by altering the PEUU/ECM weight ratio. Scaffold tensile strengths for PEUU/ECM ratios of 67/33, 72/28 and 80/20 ranged from 80 to 187 kPa in the longitudinal axis (parallel to the collecting mandrel axis) and 41-91 kPa in the circumferential axis with 645-938% breaking strains. The 72/28 biohybrid composite and a control scaffold generated from electrospun PEUU alone were implanted into Lewis rats, replacing a full-thickness abdominal wall defect. At 4 wk, no infection or herniation was found at the implant site. Histological staining showed extensive cellular infiltration into the biohybrid scaffold with the newly developed tissue well integrated with the native periphery, while minimal cellular ingress into the electrospun PEUU scaffold was observed. Mechanical testing of explanted constructs showed evidence of substantial remodeling, with composite scaffolds adopting properties more comparable to the native abdominal wall. The described elastic biohybrid material imparts features of ECM gel bioactivity with PEUU strength and handling to provide a promising composite biomaterial for soft tissue repair and replacement.


Biomaterials | 2010

Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold

Ryotaro Hashizume; Kazuro L. Fujimoto; Yi Hong; Nicholas J. Amoroso; Kimimasa Tobita; Toshio Miki; Bradley B. Keller; Michael S. Sacks; William R. Wagner

Although a variety of materials are currently used for abdominal wall repair, general complications encountered include herniation, infection, and mechanical mismatch with native tissue. An approach wherein a degradable synthetic material is ultimately replaced by tissue mechanically approximating the native state could obviate these complications. We report here on the generation of biodegradable scaffolds for abdominal wall replacement using a wet electrospinning technique in which fibers of a biodegradable elastomer, poly(ester urethane)urea (PEUU), were concurrently deposited with electrosprayed serum-based culture medium. Wet electrospun PEUU (wet ePEUU) was found to exhibit markedly different mechanical behavior and to possess an altered microstructure relative to dry processed ePEUU. In a rat model for abdominal wall replacement, wet ePEUU scaffolds (1x2.5 cm) provided a healing result that developed toward approximating physiologic mechanical behavior at 8 weeks. An extensive cellular infiltrate possessing contractile smooth muscle markers was observed together with extensive extracellular matrix (collagens, elastin) elaboration. Control implants of dry ePEUU and expanded polytetrafluoroethylene did not experience substantial cellular infiltration and did not take on the native mechanical anisotropy of the rat abdominal wall. These results illustrate the markedly different in vivo behavior observed with this newly reported wet electrospinning process, offering a potentially useful refinement of an increasingly common biomaterial processing technique.


Journal of Biomedical Materials Research Part A | 2014

Polypropylene Surgical Mesh Coated with Extracellular Matrix Mitigates the Host Foreign Body Response

Matthew T. Wolf; Christopher A. Carruthers; Christopher L. Dearth; Peter M. Crapo; Alexander Huber; Olivia A. Burnsed; Ricardo Londono; Scott A. Johnson; Kerry A. Daly; Elizabeth C. Stahl; John M. Freund; Christopher J. Medberry; Lisa E. Carey; Alejandro Nieponice; Nicholas J. Amoroso; Stephen F. Badylak

Surgical mesh devices composed of synthetic materials are commonly used for ventral hernia repair. These materials provide robust mechanical strength and are quickly incorporated into host tissue; factors that contribute to reduced hernia recurrence rates. However, such mesh devices cause a foreign body response with the associated complications of fibrosis and patient discomfort. In contrast, surgical mesh devices composed of naturally occurring extracellular matrix (ECM) are associated with constructive tissue remodeling, but lack the mechanical strength of synthetic materials. A method for applying a porcine dermal ECM hydrogel coating to a polypropylene mesh is described herein with the associated effects upon the host tissue response and biaxial mechanical behavior. Uncoated and ECM coated heavy-weight BARD™ Mesh were compared to the light-weight ULTRAPRO™ and BARD™ Soft Mesh devices in a rat partial thickness abdominal defect overlay model. The ECM coated mesh attenuated the pro-inflammatory response compared to all other devices, with a reduced cell accumulation and fewer foreign body giant cells. The ECM coating degraded by 35 days, and was replaced with loose connective tissue compared to the dense collagenous tissue associated with the uncoated polypropylene mesh device. Biaxial mechanical characterization showed that all of the mesh devices were of similar isotropic stiffness. Upon explanation, the light-weight mesh devices were more compliant than the coated or uncoated heavy-weight devices. This study shows that an ECM coating alters the default host response to a polypropylene mesh, but not the mechanical properties in an acute in vivo abdominal repair model.


Acta Biomaterialia | 2012

Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering.

Nicholas J. Amoroso; Antonio D'Amore; Yi Hong; Christian P. Rivera; Michael S. Sacks; William R. Wagner

Biodegradable thermoplastic elastomers are attractive for application in cardiovascular tissue construct development due to their amenability to a wide range of physical property tuning. For heart valve leaflets, while low flexural stiffness is a key design feature, control of this parameter has been largely neglected in the scaffold literature where electrospinning is being utilized. This study evaluated the effect of processing variables and secondary fiber populations on the microstructure, tensile and bending mechanics of electrospun biodegradable polyurethane scaffolds for heart valve tissue engineering. Scaffolds were fabricated from poly(ester urethane) urea (PEUU) and the deposition mandrel was translated at varying rates in order to modify fiber intersection density. Scaffolds were also fabricated in conjunction with secondary fiber populations designed either for mechanical reinforcement or to be selectively removed following fabrication. It was determined that increasing fiber intersection densities within PEUU scaffolds was associated with lower bending moduli. Further, constructs fabricated with stiff secondary fiber populations had higher bending moduli whereas constructs with secondary fiber populations which were selectively removed had noticeably lower bending moduli. Insights gained from this work will be directly applicable to the fabrication of soft tissue constructs, specifically in the development of cardiac valve tissue constructs.


Advanced Materials | 2011

Elastomeric Electrospun Polyurethane Scaffolds: The Interrelationship Between Fabrication Conditions, Fiber Topology, and Mechanical Properties

Nicholas J. Amoroso; Antonio D'Amore; Yi Hong; William R. Wagner; Michael S. Sacks

Electrospinning has been gaining increasing popularity in the fabrication of engineered tissue scaffolds due to its ability to produce nano to micro scale fibrous sheets. Many investigators have attempted to apply various degrees of control to this process in order to produce fiber meshes with more predictable patterns. These attempts have largely been limited to controlling fiber alignment and have fallen into two categories: physical manipulation of the fibers by pulling them into alignment using a rapidly spinning mandrel[1–3] or manipulation of the electric field during fabrication.[4, 5]


Journal of The Mechanical Behavior of Biomedical Materials | 2014

From single fiber to macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials.

Antonio D’Amore; Nicholas J. Amoroso; Riccardo Gottardi; Christopher M. Hobson; Christopher A. Carruthers; Simon C. Watkins; William R. Wagner; Michael S. Sacks

In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors. These were chosen to evaluate the effects on macro-mechanics based on measurable geometric parameters such as fiber intersections, connectivity, orientation, and diameter. Simulations were conducted with only the fiber material model parameters adjusted to match the macro-level mechanical test data. Fiber model validation was performed at the microscopic level by individual fiber mechanical tests using AFM. Results demonstrated very good agreement to the experimental data, and revealed the formation of extended preferential fiber orientations spanning the entire model space. We speculate that these emergent structures may be responsible for the tissue-like macroscale behaviors observed in electrospun scaffolds. To conclude, the modeling approach has implications for (1) gaining insight on the intricate relationship between fabrication variables, structure, and mechanics to manufacture more functional devices/materials, (2) elucidating the effects of cell or particulate inclusions on global construct mechanics, and (3) fabricating better performing tissue surrogates that could recapitulate native tissue mechanics.


Biomaterials | 2013

Non-invasive Characterization of Polyurethane-based Tissue Constructs in a Rat Abdominal Repair Model Using High Frequency Ultrasound Elasticity Imaging

Jiao Yu; Keisuke Takanari; Yi Hong; Kee Won Lee; Nicholas J. Amoroso; Yadong Wang; William R. Wagner; Kang Kim

The evaluation of candidate materials and designs for soft tissue scaffolds would benefit from the ability to monitor the mechanical remodeling of the implant site without the need for periodic animal sacrifice and explant analysis. Toward this end, the ability of non-invasive ultrasound elasticity imaging (UEI) to assess temporal mechanical property changes in three different types of porous, biodegradable polyurethane scaffolds was evaluated in a rat abdominal wall repair model. The polymers utilized were salt-leached scaffolds of poly(carbonate urethane) urea, poly(ester urethane) urea and poly(ether ester urethane) urea at 85% porosity. A total of 60 scaffolds (20 each type) were implanted in a full thickness muscle wall replacement in the abdomens of 30 rats. The constructs were ultrasonically scanned every 2 weeks and harvested at weeks 4, 8 and 12 for compression testing or histological analysis. UEI demonstrated different temporal stiffness trends among the different scaffold types, while the stiffness of the surrounding native tissue remained unchanged. The changes in average normalized strains developed in the constructs from UEI compared well with the changes of mean compliance from compression tests and histology. The average normalized strains and the compliance for the same sample exhibited a strong linear relationship. The ability of UEI to identify herniation and to characterize the distribution of local tissue in-growth with high resolution was also investigated. In summary, the reported data indicate that UEI may allow tissue engineers to sequentially evaluate the progress of tissue construct mechanical behavior in vivo and in some cases may reduce the need for interim time point animal sacrifice.


Journal of Tissue Engineering and Regenerative Medicine | 2016

Abdominal wall reconstruction by a regionally distinct biocomposite of extracellular matrix digest and a biodegradable elastomer

Keisuke Takanari; Yi Hong; Ryotaro Hashizume; Alexander Huber; Nicholas J. Amoroso; Antonio D'Amore; Stephen F. Badylak; William R. Wagner

Current extracellular matrix (ECM) derived scaffolds offer promising regenerative responses in many settings, however in some applications there may be a desire for more robust and long lasting mechanical properties. A biohybrid composite material that offers both strength and bioactivity for optimal healing towards native tissue behavior may offer a solution to this problem. A regionally distinct biocomposite scaffold composed of a biodegradable elastomer (poly(ester urethane)urea) and porcine dermal ECM gel was generated to meet this need by a concurrent polymer electrospinning/ECM gel electrospraying technique where the electrosprayed component was varied temporally during the processing. A sandwich structure was achieved with polymer fiber rich upper and lower layers for structural support and an ECM‐rich inner layer to encourage cell ingrowth. Increasing the upper and lower layer fiber content predictably increased tensile strength. In a rat full thickness abdominal wall defect model, the sandwich scaffold design maintained its thickness whereas control biohybrid scaffolds lacking the upper and lower fiber‐rich regions failed at 8 weeks. Sandwich scaffold implants also showed higher collagen content 4 and 8 weeks after implantation, exhibited an increased M2 macrophage phenotype response at later times and developed biaxial mechanical properties better approximating native tissue. By employing a processing approach that creates a sheet‐form scaffold with regionally distinct zones, it was possible to improve biological outcomes in body wall repair and provide the means for further tuning scaffold mechanical parameters when targeting other applications. Copyright


Journal of Biomedical Materials Research Part A | 2016

Nanometer‐sized extracellular matrix coating on polymer‐based scaffold for tissue engineering applications

Noriyuki Uchida; Srikanth Sivaraman; Nicholas J. Amoroso; William R. Wagner; Akihiro Nishiguchi; Michiya Matsusaki; Mitsuru Akashi; Jiro Nagatomi

Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffolds 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model

Antonio D'Amore; João S. Soares; John A. Stella; Will Zhang; Nicholas J. Amoroso; John E. Mayer; William R. Wagner; Michael S. Sacks

Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments.

Collaboration


Dive into the Nicholas J. Amoroso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Hong

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Michael S. Sacks

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John E. Mayer

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge