Ryotaro Hashizume
University of Pittsburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ryotaro Hashizume.
Biomaterials | 2009
Kazuro L. Fujimoto; Zuwei Ma; Devin M. Nelson; Ryotaro Hashizume; Jianjun Guan; Kimimasa Tobita; William R. Wagner
Injection of a bulking material into the ventricular wall has been proposed as a therapy to prevent progressive adverse remodeling due to high wall stresses that develop after myocardial infarction. Our objective was to design, synthesize and characterize a biodegradable, thermoresponsive hydrogel for this application based on copolymerization of N-isopropylacrylamide (NIPAAm), acrylic acid (AAc) and hydroxyethyl methacrylate-poly(trimethylene carbonate) (HEMAPTMC). By evaluating a range of monomer ratios, poly(NIPAAm-co-AAc-co-HEMAPTMC) at a feed ratio of 86/4/10 was shown to be ideal since it formed a hydrogel at 37 degrees C, and gradually became soluble over a 5 month period in vitro through hydrolytic cleavage of the PTMC residues. HEMAPTMC, copolymer and degradation product chemical structures were verified by NMR. No degradation product cytotoxicity was observed in vitro. In a rat chronic infarction model, the infarcted left ventricular (LV) wall was injected with the hydrogel or phosphate buffered saline (PBS). In the PBS group, LV cavity area increased and contractility decreased at 8 wk (p<0.05 versus pre-injection), while in the hydrogel group both parameters were preserved during this period. Tissue ingrowth was observed in the hydrogel injected area and a thicker LV wall and higher capillary density were found for the hydrogel versus PBS group. Smooth muscle cells with contractile phenotype were also identified in the hydrogel injected LV wall. The designed poly(NIPAAm-co-AAc-co-HEMAPTMC) hydrogel of this report may thus offer an attractive biomaterial-centered treatment option for ischemic cardiomyopathy.
Acta Biomaterialia | 2011
Devin M. Nelson; Zuwei Ma; Kazuro L. Fujimoto; Ryotaro Hashizume; William R. Wagner
Heart failure initiated by coronary artery disease and myocardial infarction (MI) is a widespread, debilitating condition for which there are a limited number of options to prevent disease progression. Intra-myocardial biomaterial injection following MI theoretically provides a means to reduce the stresses experienced by the infarcted ventricular wall, which may alter the pathological remodeling process in a positive manner. Furthermore, biomaterial injection provides an opportunity to concurrently introduce cellular components and depots of bioactive agents. Biologically derived, synthetic and hybrid materials have been applied, as well as materials designed expressly for this purpose, although optimal design parameters, including degradation rate and profile, injectability, elastic modulus and various possible bioactivities, largely remain to be elucidated. This review seeks to summarize the current body of growing literature where biomaterial injection, with and without concurrent pharmaceutical or cellular delivery, has been pursued to improve functional outcomes following MI. The literature to date generally demonstrates acute functional benefits associated with biomaterial injection therapy across a broad variety of animal models and material compositions. Further functional improvements have been reported when cellular or pharmaceutical agents have been incorporated into the delivery system. Despite these encouraging early results, the specific mechanisms behind the observed functional improvements remain to be fully explored and future studies employing hypothesis-driven material design and selection may increase the potential of this approach to alleviate the morbidity and mortality of heart failure.
Biomaterials | 2010
Yi Hong; Jianjun Guan; Kazuro L. Fujimoto; Ryotaro Hashizume; Anca L. Pelinescu; William R. Wagner
Biodegradable elastomeric scaffolds are of increasing interest for applications in soft tissue repair and regeneration, particularly in mechanically active settings. The rate at which such a scaffold should degrade for optimal outcomes, however, is not generally known and the ability to select from similar scaffolds that vary in degradation behavior to allow such optimization is limited. Our objective was to synthesize a family of biodegradable polyurethane elastomers where partial substitution of polyester segments with polycarbonate segments in the polymer backbone would lead to slower degradation behavior. Specifically, we synthesized poly(ester carbonate)urethane ureas (PECUUs) using a blended soft segment of poly(caprolactone) (PCL) and poly(1,6-hexamethylene carbonate) (PHC), a 1,4-diisocyanatobutane hard segment and chain extension with putrescine. Soft segment PCL/PHC molar ratios of 100/0, 75/25, 50/50, 25/75, and 0/100 were investigated. Polymer tensile strengths varied from 14 to 34 MPa with breaking strains of 660-875%, initial moduli of 8-24 MPa and 100% recovery after 10% strain. Increased PHC content was associated with softer, more distensible films. Scaffolds produced by salt leaching supported smooth muscle cell adhesion and growth in vitro. PECUU in aqueous buffer in vitro and subcutaneous implants in rats of PECUU scaffolds showed degradation slower than comparable poly(ester urethane)urea and faster than poly(carbonate urethane)urea. These slower degrading thermoplastic polyurethanes provide opportunities to investigate the role of relative degradation rates for mechanically supportive scaffolds in a variety of soft tissue repair and reconstructive procedures.
Biomaterials | 2011
Yi Hong; Alexander Huber; Keisuke Takanari; Nicholas J. Amoroso; Ryotaro Hashizume; Stephen F. Badylak; William R. Wagner
A biohybrid composite consisting of extracellular matrix (ECM) gel from porcine dermal tissue and biodegradable elastomeric fibers was generated and evaluated for soft tissue applications. ECM gel possesses attractive biocompatibility and bioactivity with weak mechanical properties and rapid degradation, while electrospun biodegradable poly(ester urethane)urea (PEUU) has good mechanical properties but limited cellular infiltration and tissue integration. A concurrent gel electrospray/polymer electrospinning method was employed to create ECM gel/PEUU fiber composites with attractive mechanical properties, including high flexibility and strength. Electron microscopy revealed a structure of interconnected fibrous layers embedded in ECM gel. Tensile mechanical properties could be tuned by altering the PEUU/ECM weight ratio. Scaffold tensile strengths for PEUU/ECM ratios of 67/33, 72/28 and 80/20 ranged from 80 to 187 kPa in the longitudinal axis (parallel to the collecting mandrel axis) and 41-91 kPa in the circumferential axis with 645-938% breaking strains. The 72/28 biohybrid composite and a control scaffold generated from electrospun PEUU alone were implanted into Lewis rats, replacing a full-thickness abdominal wall defect. At 4 wk, no infection or herniation was found at the implant site. Histological staining showed extensive cellular infiltration into the biohybrid scaffold with the newly developed tissue well integrated with the native periphery, while minimal cellular ingress into the electrospun PEUU scaffold was observed. Mechanical testing of explanted constructs showed evidence of substantial remodeling, with composite scaffolds adopting properties more comparable to the native abdominal wall. The described elastic biohybrid material imparts features of ECM gel bioactivity with PEUU strength and handling to provide a promising composite biomaterial for soft tissue repair and replacement.
Biomacromolecules | 2008
Yi Hong; Kazuro L. Fujimoto; Ryotaro Hashizume; Jianjun Guan; John J. Stankus; Kimimasa Tobita; William R. Wagner
Damage control laparotomy is commonly applied to prevent compartment syndrome following trauma but is associated with new risks to the tissue, including infection. To address the need for biomaterials to improve abdominal laparotomy management, we fabricated an elastic, fibrous composite sheet with two distinct submicrometer fiber populations: biodegradable poly(ester urethane) urea (PEUU) and poly(lactide-co-glycolide) (PLGA), where the PLGA was loaded with the antibiotic tetracycline hydrochloride (PLGA-tet). A two-stream electrospinning setup was developed to create a uniform blend of PEUU and PLGA-tet fibers. Composite sheets were flexible with breaking strains exceeding 200%, tensile strengths of 5-7 MPa, and high suture retention capacity. The blending of PEUU fibers markedly reduced the shrinkage ratio observed for PLGA-tet sheets in buffer from 50% to 15%, while imparting elastomeric properties to the composites. Antibacterial activity was maintained for composite sheets following incubation in buffer for 7 days at 37 degrees C. In vivo studies demonstrated prevention of abscess formation in a contaminated rat abdominal wall model with the implanted material. These results demonstrate the benefits derivable from a two-stream electrospinning approach wherein mechanical and controlled-release properties are contributed by independent fiber populations and the applicability of this composite material to abdominal wall closure.
Biomaterials | 2010
Ryotaro Hashizume; Kazuro L. Fujimoto; Yi Hong; Nicholas J. Amoroso; Kimimasa Tobita; Toshio Miki; Bradley B. Keller; Michael S. Sacks; William R. Wagner
Although a variety of materials are currently used for abdominal wall repair, general complications encountered include herniation, infection, and mechanical mismatch with native tissue. An approach wherein a degradable synthetic material is ultimately replaced by tissue mechanically approximating the native state could obviate these complications. We report here on the generation of biodegradable scaffolds for abdominal wall replacement using a wet electrospinning technique in which fibers of a biodegradable elastomer, poly(ester urethane)urea (PEUU), were concurrently deposited with electrosprayed serum-based culture medium. Wet electrospun PEUU (wet ePEUU) was found to exhibit markedly different mechanical behavior and to possess an altered microstructure relative to dry processed ePEUU. In a rat model for abdominal wall replacement, wet ePEUU scaffolds (1x2.5 cm) provided a healing result that developed toward approximating physiologic mechanical behavior at 8 weeks. An extensive cellular infiltrate possessing contractile smooth muscle markers was observed together with extensive extracellular matrix (collagens, elastin) elaboration. Control implants of dry ePEUU and expanded polytetrafluoroethylene did not experience substantial cellular infiltration and did not take on the native mechanical anisotropy of the rat abdominal wall. These results illustrate the markedly different in vivo behavior observed with this newly reported wet electrospinning process, offering a potentially useful refinement of an increasingly common biomaterial processing technique.
Cells Tissues Organs | 2012
John M. Wainwright; Ryotaro Hashizume; Kazuro L. Fujimoto; Nathaniel T. Remlinger; Colin Pesyna; William R. Wagner; Kimimasa Tobita; Thomas W. Gilbert; Stephen F. Badylak
Background: Surgical reconstruction of congenital heart defects is often limited by the nonresorbable material used to approximate normal anatomy. In contrast, biologic scaffold materials composed of resorbable non-cross-linked extracellular matrix (ECM) have been used for tissue reconstruction of multiple organs and are replaced by host tissue. Preparation of whole organ ECM by decellularization through vascular perfusion can maintain much of the native three-dimensional (3D) structure, strength, and tissue-specific composition. A 3D cardiac ECM (C-ECM) biologic scaffold material would logically have structural and functional advantages over materials such as Dacron™ for myocardial repair, but the in vivo remodeling characteristics of C-ECM have not been investigated to date. Methods and Results: A porcine C-ECM patch or Dacron patch was used to reconstruct a full-thickness right ventricular outflow tract (RVOT) defect in a rat model with end points of structural remodeling function at 16 weeks. The Dacron patch was encapsulated by dense fibrous tissue and showed little cellular infiltration. Echocardiographic analysis showed that the right ventricle of the hearts patched with Dacron were dilated at 16 weeks compared to presurgery baseline values. The C-ECM patch remodeled into dense, cellular connective tissue with scattered small islands of cardiomyocytes. The hearts patched with C-ECM showed no difference in the size or function of the ventricles as compared to baseline values at both 4 and 16 weeks. Conclusions: The C-ECM patch was associated with better functional and histomorphological outcomes compared to the Dacron patch in this rat model of RVOT reconstruction.
Cell Transplantation | 2009
Kazuro L. Fujimoto; Toshio Miki; Li J. Liu; Ryotaro Hashizume; Stephen C. Strom; William R. Wagner; Bradley B. Keller; Kimimasa Tobita
Stem cells contained in the amniotic membrane may be useful for cellular repair of the damaged heart. Previously, we showed that amnion-derived cells (ADCs) express embryonic stem cell surface markers and pluripotent stem cell-specific transcription factor genes. These ADCs also possess the potential for mesoderm (cardiac) lineage differentiation. In the present study we investigated whether untreated naive ADC transplantation into the injured left ventricular (LV) myocardium is beneficial as a cell-based cardiac repair strategy in a rat model. ADCs were isolated from Lewis rat embryonic day 14 amniotic membranes. FACS analysis revealed that freshly isolated ADCs contained stage-specific embryonic antigen-1 (SSEA-1), Oct-4-positive cells, and mesenchymal stromal cells, while hematopoietic stem cell marker positive cells were absent. Reverse transcription-PCR revealed that naive ADCs expressed cardiac and vascular specific genes. We injected freshly isolated ADCs (2 × 106 cells suspended in PBS, ADC group) into acutely infarcted LV myocardium produced by proximal left coronary ligation. PBS was injected in postinfarction controls (PBS group). Cardiac function was assessed at 2 and 6 weeks after injection. ADC treatment attenuated LV dilatation and sustained LV contractile function at 2 and 6 weeks in comparison to PBS controls (p < 0.05, ANOVA). LV peak systolic pressure and maximum dP/dt of ADC-treated heart were higher and LV end-diastolic pressure and negative dP/dt were lower than in PBS controls (p < 0.05). Histological assessment revealed that infarcted myocardium of the ADC-treated group had less fibrosis, thicker ventricular walls, and increased capillary density (p < 0.05). The fate of injected ADCs was confirmed using ADCs derived from EGFP(+) transgenic rats. Immunohistochemistry at 6 weeks revealed that EGFP(+) cells colocalized with von Willebrand factor, α-smooth muscle actin, or cardiac troponin-I. Our results suggest that naive ADCs are a potential cell source for cellular cardiomyoplasty.
Hypertension | 2015
Naoshi Shimojo; Ryotaro Hashizume; Kazuki Kanayama; Mari Hara; Yuka Suzuki; Tomohiro Nishioka; Michiaki Hiroe; Toshimichi Yoshida; Kyoko Imanaka-Yoshida
Tenascin-C (TN-C) is an extracellular matrix protein not detected in normal adult heart, but expressed in several heart diseases closely associated with inflammation. Accumulating data suggest that TN-C may play a significant role in progression of ventricular remodeling. In this study, we aimed to elucidate the role of TN-C in hypertensive cardiac fibrosis and underlying molecular mechanisms. Angiotensin II was administered to wild-type and TN-C knockout mice for 4 weeks. In wild-type mice, the treatment induced increase of collagen fibers and accumulation of macrophages in perivascular areas associated with deposition of TN-C and upregulated the expression levels of interleukin-6 and monocyte chemoattractant protein-1 as compared with wild-type/control mice. These changes were significantly reduced in TN-C knockout/angiotensin II mice. In vitro, TN-C accelerated macrophage migration and induced accumulation of integrin &agr;V&bgr;3 in focal adhesions, with phosphorylation of focal adhesion kinase (FAK) and Src. TN-C treatment also induced nuclear translocation of phospho-NF-&kgr;B and upregulated interleukin-6 expression of macrophages in an NF-&kgr;B–dependent manner; this being suppressed by inhibitors for integrin &agr;V&bgr;3 and Src. Furthermore, interleukin-6 upregulated expression of collagen I by cardiac fibroblasts. TN-C may enhance inflammatory responses by accelerating macrophage migration and synthesis of proinflammatory/profibrotic cytokines via integrin &agr;V&bgr;3/FAK-Src/NF-&kgr;B, resulting in increased fibrosis.
Biomacromolecules | 2014
Devin M. Nelson; Ryotaro Hashizume; Tomo Yoshizumi; Anna K. Blakney; Zuwei Ma; William R. Wagner
It is increasingly appreciated that the properties of a biomaterial used in intramyocardial injection therapy influence the outcomes of infarcted hearts that are treated. In this report the extended in vivo efficacy of a thermally responsive material that can deliver dual growth factors while providing a slow degradation time and high mechanical stiffness is examined. Copolymers consisting of N-isopropylacrylamide, 2-hydroxyethyl methacrylate, and degradable methacrylate polylactide were synthesized. The release of bioactive basic fibroblast growth factor (bFGF) and insulin-like growth factor 1 (IGF1) from the gel and loaded poly(lactide-co-glycolide) microparticles was assessed. Hydrogel with or without loaded growth factors was injected into 2 week-old infarcts in Lewis rats and animals were followed for 16 weeks. The hydrogel released bioactive bFGF and IGF1 as shown by mitogenic effects on rat smooth muscle cells in vitro. Cardiac function and geometry were improved for 16 weeks after hydrogel injection compared to saline injection. Despite demonstrating that left ventricular levels of bFGF and IGF1 were elevated for two weeks after injection of growth factor loaded gels, both functional and histological assessment showed no added benefit to inclusion of these proteins. This result points to the complexity of designing appropriate materials for this application and suggests that the nature of the material alone, without exogenous growth factors, has a direct ability to influence cardiac remodeling.