Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Brandon is active.

Publication


Featured researches published by Nicholas J. Brandon.


Nature | 1999

GABA A -receptor-associated protein links GABA A receptors and the cytoskeleton

Hongbing Wang; Fiona K. Bedford; Nicholas J. Brandon; Stephen J. Moss; Richard W. Olsen

Type-A receptors for the neurotransmitter GABA (γ-aminobutyric acid) are ligand-gated chloride channels that mediate inhibitory neurotransmission. Each subunit of the pentameric receptor protein has ligand-binding sites in the amino-terminal extracellular domain and four membrane-spanning regions, one of which forms a wall of the ion channel. Each subunit also has a large intracellular loop that may be a target for protein kinases and be required for subcellular targeting and membrane clustering of the receptor, perhaps by anchoring the receptor to the cytoskeleton. Neurotransmitter receptors need to be positioned in high density in the cell membrane at sites postsynaptic to nerve terminals releasing that neurotransmitter. Other members of the superfamily of ligand-gated ion-channel receptors associate in postsynaptic-membrane clusters by binding to the proteins rapsyn or gephyrin. Here we identify a new cellular protein, GABAA-receptor-associated protein (GABARAP), which can interact with the γ2 subunit of GABAA receptors. GABARAP binds to GABAA receptors both in vitro and in vivo, and co-localizes with the punctate staining of GABAA receptors on cultured cortical neurons. Sequence analysis shows similarity between GABARAP and light chain-3 of microtubule-associated proteins 1A and 1B. Moreover, the N terminus of GABARAP is highly positively charged and features a putative tubulin-binding motif. The interactions among GABAA receptors, GABARAP and tubulin suggest a mechanism for the targeting and clustering of GABAA receptors.


Science | 2005

DISC1 and PDE4B Are Interacting Genetic Factors in Schizophrenia That Regulate cAMP Signaling

J. Kirsty Millar; Benjamin S. Pickard; Shaun Mackie; Rachel James; Sheila Christie; Sebastienne R. Buchanan; M. Pat Malloy; Jennifer E. Chubb; Elaine Huston; George S. Baillie; Pippa A. Thomson; Elaine V. Hill; Nicholas J. Brandon; Jean-Christophe Rain; L. Miguel Camargo; Paul J. Whiting; Miles D. Houslay; Douglas Blackwood; Walter J. Muir; David J. Porteous

The disrupted in schizophrenia 1 (DISC1) gene is a candidate susceptibility factor for schizophrenia, but its mechanistic role in the disorder is unknown. Here we report that the gene encoding phosphodiesterase 4B (PDE4B) is disrupted by a balanced translocation in a subject diagnosed with schizophrenia and a relative with chronic psychiatric illness. The PDEs inactivate adenosine 3′,5′-monophosphate (cAMP), a second messenger implicated in learning, memory, and mood. We show that DISC1 interacts with the UCR2 domain of PDE4B and that elevation of cellular cAMP leads to dissociation of PDE4B from DISC1 and an increase in PDE4B activity. We propose a mechanistic model whereby DISC1 sequesters PDE4B in resting cells and releases it in an activated state in response to elevated cAMP.


Nature Neuroscience | 2008

Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory.

Feng Liu; Mark Day; Luis Muniz; Daniel Bitran; Robert Arias; Raquel Revilla-Sanchez; Steve Grauer; Guoming Zhang; Cody Kelley; Virginia L. Pulito; Amy Sung; Ronald F. Mervis; Rachel Navarra; Warren D. Hirst; Peter Reinhart; Karen L. Marquis; Stephen J. Moss; Menelas N. Pangalos; Nicholas J. Brandon

Estrogens have long been implicated in influencing cognitive processes, yet the molecular mechanisms underlying these effects and the roles of the estrogen receptors alpha (ERα) and beta (ERβ) remain unclear. Using pharmacological, biochemical and behavioral techniques, we demonstrate that the effects of estrogen on hippocampal synaptic plasticity and memory are mediated through ERβ. Selective ERβ agonists increased key synaptic proteins in vivo, including PSD-95, synaptophysin and the AMPA-receptor subunit GluR1. These effects were absent in ERβ knockout mice. In hippocampal slices, ERβ activation enhanced long-term potentiation, an effect that was absent in slices from ERβ knockout mice. ERβ activation induced morphological changes in hippocampal neurons in vivo, including increased dendritic branching and increased density of mushroom-type spines. An ERβ agonist, but not an ERα agonist, also improved performance in hippocampus-dependent memory tasks. Our data suggest that activation of ERβ can regulate hippocampal synaptic plasticity and improve hippocampus-dependent cognition.


Nature Reviews Neuroscience | 2011

Linking neurodevelopmental and synaptic theories of mental illness through DISC1

Nicholas J. Brandon; Akira Sawa

Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.


The Journal of Neuroscience | 2008

Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1.

Sanbing Shen; Bing Lang; Chizu Nakamoto; Feng Zhang; Jin Pu; Soh-Leh Kuan; Christina Chatzi; S. He; Iain Mackie; Nicholas J. Brandon; Karen L. Marquis; Mark Day; Orest Hurko; Colin D. McCaig; Gernot Riedel; David St Clair

Disrupted-in-Schizophrenia-1 (DISC1), identified by positional cloning of a balanced translocation (1;11) with the breakpoint in intron 8 of a large Scottish pedigree, is associated with a range of neuropsychiatric disorders including schizophrenia. To model this mutation in mice, we have generated Disc1tr transgenic mice expressing 2 copies of truncated Disc1 encoding the first 8 exons using a bacterial artificial chromosome (BAC). With this partial simulation of the human situation, we have discovered a range of phenotypes including a series of novel features not previously reported. Disc1tr transgenic mice display enlarged lateral ventricles, reduced cerebral cortex, partial agenesis of the corpus callosum, and thinning of layers II/III with reduced neural proliferation at midneurogenesis. Parvalbumin GABAergic neurons are reduced in the hippocampus and medial prefrontal cortex, and displaced in the dorsolateral frontal cortex. In culture, transgenic neurons grow fewer and shorter neurites. Behaviorally, transgenic mice exhibit increased immobility and reduced vocalization in depression-related tests, and impairment in conditioning of latent inhibition. These abnormalities in Disc1tr transgenic mice are consistent with findings in severe schizophrenia.


Molecular and Cellular Neuroscience | 2004

Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders

Nicholas J. Brandon; E.J. Handford; I. Schurov; J.-C Rain; M Pelling; B. Duran-Jimeniz; L.M. Camargo; K.R Oliver; D Beher; M.S. Shearman; Paul J. Whiting

Disrupted In Schizophrenia 1 (DISC1) was identified as a potential susceptibility gene for schizophrenia due to its disruption by a balanced t(1;11) (q42;q14) translocation, which has been shown to cosegregate with major psychiatric disease in a large Scottish family. We have demonstrated that DISC1 exists in a neurodevelopmentally regulated protein complex with Nudel. The complex is abundant at E17 and in early postnatal life but is greatly reduced in the adult. Nudel has previously been shown to bind Lis1, a gene underlying lissencephaly in humans. Critically, we show that the predicted peptide product resulting from the Scottish translocation removes the interaction domain for Nudel. DISC1 interacts with Nudel through a leucine zipper domain and binds to a novel DISC1-interaction domain on Nudel, which is independent from the Lis1 binding site. We show that Nudel is able to act as a bridge between DISC1 and Lis1 to allow formation of a trimolecular complex. Nudel has been implicated to play a role in neuronal migration, together with the developmental variation in the abundance of the DISC1-Nudel complex, may implicate a defective DISC1-Nudel complex as a neurodevelopmental cause of schizophrenia.


Journal of Pharmacology and Experimental Therapeutics | 2009

Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia.

Steven M. Grauer; Virginia L. Pulito; Rachel Navarra; Michele P. Kelly; Cody Kelley; Radka Graf; Barbara Langen; Sheree F. Logue; Lixin Jiang; Erik I. Charych; Ute Egerland; Feng Liu; Karen L. Marquis; Michael S. Malamas; Thorsten Hage; Thomas A. Comery; Nicholas J. Brandon

Following several recent reports that suggest that dual cAMP and cGMP phosphodiesterase 10A (PDE10A) inhibitors may present a novel mechanism to treat positive symptoms of schizophrenia, we sought to extend the preclinical characterization of two such compounds, papaverine [1-(3,4-dimethoxybenzyl)-6,7-dimethoxyisoquinoline] and MP-10 [2-{[4-(1-methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)phenoxy]methyl}quinoline], in a variety of in vivo and in vitro assays. Both of these compounds were active in a range of antipsychotic models, antagonizing apomorphine-induced climbing in mice, inhibiting conditioned avoidance responding in both rats and mice, and blocking N-methyl-d-aspartate antagonist-induced deficits in prepulse inhibition of acoustic startle response in rats, while improving baseline sensory gating in mice, all of which strengthen previously reported observations. These compounds also demonstrated activity in several assays intended to probe negative symptoms and cognitive deficits, two disease domains that are underserved by current treatments, with both compounds showing an ability to increase sociality in BALB/cJ mice in the social approach/social avoidance assay, enhance social odor recognition in mice and, in the case of papaverine, improve novel object recognition in rats. Biochemical characterization of these compounds has shown that PDE10A inhibitors modulate both the dopamine D1-direct and D2-indirect striatal pathways and regulate the phosphorylation status of a panel of glutamate receptor subunits in the striatum. It is striking that PDE10A inhibition increased the phosphorylation of the (±)-α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor GluR1 subunit at residue serine 845 at the cell surface. Together, our results suggest that PDE10A inhibitors alleviate both dopaminergic and glutamatergic dysfunction thought to underlie schizophrenia, which may contribute to the broad-spectrum efficacy.


Journal of Biological Chemistry | 1999

Cell surface stability of gamma-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition.

Christopher N. Connolly; Josef T. Kittler; Philip Thomas; Julia M. Uren; Nicholas J. Brandon; Trevor G. Smart; Stephen J. Moss

Type A γ-aminobutyric acid receptors (GABAA), the major sites of fast synaptic inhibition in the brain, are believed to be composed predominantly of α, β, and γ subunits. Although cell surface expression is essential for GABAA receptor function, little is known regarding its regulation. To address this issue, the membrane stability of recombinant α1β2 or α1β2γ2 receptors was analyzed in human embryonic kidney cells. α1β2γ2 but not α1β2 receptors were found to recycle constitutively between the cell surface and a microtubule-dependent, perinuclear endosomal compartment. Similar GABAA receptor endocytosis was also seen in cultured hippocampal and cortical neurons. GABAA receptor surface levels were reduced upon protein kinase C (PKC) activation. Like basal endocytosis, this response required the γ2subunit but not receptor phosphorylation. Although inhibiting PKC activity did not block α1β2γ2receptor endocytosis, it did prevent receptor down-regulation, suggesting that PKC activity may block α1β2γ2 receptor recycling to the cell surface. In agreement with this observation, blocking recycling from endosomes with wortmannin selectively reduced surface levels of γ2-containing receptors. Together, our results demonstrate that the surface stability of GABAA receptors can be dynamically and specifically regulated, enabling neurons to modulate cell surface receptor number upon the appropriate cues.


The Journal of Neuroscience | 2009

Cytoskeletal Changes Underlie Estrogen's Acute Effects on Synaptic Transmission and Plasticity

Enikö A. Kramár; Lulu Y. Chen; Nicholas J. Brandon; Christopher S. Rex; Feng Liu; Christine M. Gall; Gary Lynch

Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroids β-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogens synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA>ROCK>LIM kinase>cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.


The Journal of Neuroscience | 2009

Understanding the Role of DISC1 in Psychiatric Disease and during Normal Development

Nicholas J. Brandon; J. Kirsty Millar; Carsten Korth; Hazel Sive; Karun K. Singh; Akira Sawa

The biology of schizophrenia is complex with multiple hypotheses (dopamine, glutamate, neurodevelopmental) well supported to underlie the disease. Pathways centered on the risk factor “disrupted in schizophrenia 1” (DISC1) may be able to explain and unite these disparate hypotheses and will be the topic of this mini-symposium preview. Nearly a decade after its original identification at the center of a translocation breakpoint in a large Scottish family that was associated with major psychiatric disease, we are starting to obtain credible insights into its function and role in disease etiology. This preview will highlight a number of exciting areas of current DISC1 research that are revealing roles for DISC1 during normal brain development and also in the disease state. Together these different threads will provide a timely and exciting overview of the DISC1 field and its potential in furthering our understanding of psychiatric diseases and in developing new therapies.

Collaboration


Dive into the Nicholas J. Brandon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meredith J. Noetzel

Vanderbilt University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge