Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Darton is active.

Publication


Featured researches published by Nicholas J. Darton.


Biomaterials | 2009

The precise control of cell labelling with streptavidin paramagnetic particles

Vincent H.B. Ho; Alexander Barcza; Rongjun Chen; Karin H. Müller; Nicholas J. Darton; Nigel K.H. Slater

A previously developed cell labelling methodology has been evaluated to assess its potential to precisely control the degree of magnetic labelling. The two-step method provides a quick way of labelling cells by first biotinylating the cell membrane proteins and then binding streptavidin paramagnetic particles onto the biotinylated proteins. Characterisation studies on biotinylated HeLa cells have revealed that the biotin concentration on the cell surface can be varied by changing the biotinylating reagent concentration. At the optimal concentration (750 microm), a substantial surface biotin density (approximately 10(8) biotin per cell) could be achieved within 30 min. The degree of magnetic labelling could be altered by adjusting the concentration of paramagnetic particles added to the cells and the binding of the particles onto the cell surface was not considerably affected by the biotin density on the cell surface. The magnetic moment of the labelled cells was measured and correlated well with the degree of magnetic labelling. Cell viability studies indicated that the magnetic labelling was not cytotoxic. Magnetically labelled cells were then successfully targeted and manipulated by magnetic fields to form three dimensional multicellular structures.


Nanotechnology | 2008

Manipulation and tracking of superparamagnetic nanoparticles using?MRI

Nicholas J. Darton; Andrew J. Sederman; A. Ionescu; Caterina Ducati; Richard C. Darton; Lynn F. Gladden; Nigel K.H. Slater

The use of magnetic fields in magnetic resonance imaging (MRI) for the tracking and delivery of chemotherapeutics bound to superparamagnetic nanoparticles offers a promising method for the non-invasive treatment of inoperable tumours. Here we demonstrate that superparamagnetic magnetite nanoparticles fabricated by an easily scalable method can be driven and tracked in real time at high velocities in vitro using MRI hardware. Force balance calculations are consistent with the magnetic properties of individual 10 nm diameter particles that move collectively as micron sized agglomerates with hydrodynamic diameter similar to that inferred from zero-magnetic-field dynamic light scattering measurements.


Experimental Biology and Medicine | 2009

Simple Magnetic Cell Patterning Using Streptavidin Paramagnetic Particles

Vincent H.B. Ho; Karin H. Müller; Nicholas J. Darton; David Darling; Farzin Farzaneh; Nigel K.H. Slater

A simple methodology for cell patterning has been developed that can potentially be used to position different types of mammalian cells with high precision. In this method, cell membrane proteins were first biotinylated and then bound to streptavidin paramagnetic particles. The magnetically labeled cells were then seeded onto culture dishes and patterned using low magnetic fields. Highly defined cell patterns were achieved using HeLa, TE671 cells and human monocytes. HeLa and TE671 cells were also sequentially patterned and successfully co-cultured on the same plate using this technique. Cell viability studies proved that this magnetic labeling method was not toxic to cells. Transmission electron microscopy showed that the magnetically labeled HeLa and TE671 cells internalized some of the paramagnetic particles after two days of culture, while the labeled human monocytes did the same after only one hour. Uptake of these particles did not affect the cell patterning and cell viability. This magnetic labeling process is fast, as it involves affinity-based attachment of paramagnetic particles and does not rely on cellular uptake of magnetic materials. It may be adaptable and scalable for various applications.


Journal of Chromatography A | 2011

Fast cation-exchange separation of proteins in a plastic microcapillary disc

Nicholas J. Darton; Nuno M. Reis; Malcolm R. Mackley; Nigel K.H. Slater

A novel disposable adsorbent material for fast cation-exchange separation of proteins was developed based on plastic microcapillary films (MCFs). A MCF containing 19 parallel microcapillaries, each with a mean internal diameter of 142 μm, was prepared using a melt extrusion process from an ethylene-vinyl alcohol copolymer (EVOH). The MCF was surface functionalized to produce a cation-exchange adsorbent (herein referred as MCF-EVOH-SP). The dynamic binding capacity of the new MCF-EVOH-SP material was experimentally determined by frontal analysis using pure protein solutions in a standard liquid chromatography instrument for a range of superficial flow velocities, u(LS)=5.5-27.7 cm s⁻¹. The mean dynamic binding capacity for hen-egg lysozyme was found to be approximately 100 μg for a 5 m length film, giving a ligand binding density of 413 ng cm⁻². The dynamic binding capacity did not vary significantly over the range of u(LS) tested. The application of this novel material to subtractive chromatography was demonstrated for anionic BSA and cationic lysozyme at pH 7.2. The chromatographic separation of two cationic proteins, lysozyme and cytochrome-c, was also performed with a view to applying this technology to the analysis or purification of proteins. Future applications might include separation based on anion exchange and other modes of adsorption.


Ultrasound in Medicine and Biology | 2009

Effect of Magnetite Nanoparticle Agglomerates on Ultrasound Induced Inertial Cavitation

Moira J. Smith; Vincent H.B. Ho; Nicholas J. Darton; Nigel K.H. Slater

High intensity focused ultrasound (HIFU) induced inertial cavitation has been shown to improve release and cellular uptake of drugs. The effects of magnetite nanoparticle agglomerates (290+/-10nm diameter), silica coated magnetite nanoparticle agglomerates (320+/-10nm diameter) and silica particles (320+/-10nm diameter) suspended in MilliQ water on the degree of inertial cavitation due to HIFU were investigated. The HIFU transducer was operated at a frequency of 1.1 MHz, 1.67 kHz pulse repetition frequency, with applied duty cycles (DC) between 0% and 5% and different peak negative focal pressures (PNFPs) applied up to 7.2 MPa. The inertial cavitation dose (ICD: time averaged root-mean-squared broadband noise amplitude in the frequency domain) was measured in the presence and absence of nanoparticles when subjected to HIFU. Magnetite nanoparticle agglomerates caused a significant increase in the ICD above 2.7 MPa PNFP compared with MilliQ water, silica coated magnetite agglomerates and silica particles. With the dramatic increase in ICD on introduction of these magnetite agglomerates, this technique could provide a method of HIFU triggered drug delivery by enhancing inertial cavitation. The superparamagnetic properties of these particles offer the possibility of magnetic targeting to the site of disease.


New Biotechnology | 2012

In situ fabrication of a microfluidic device for immobilised metal affinity sensing.

Abhishek G. Deshpande; Nicholas J. Darton; Kamran Yunus; Adrian C. Fisher; Nigel K.H. Slater

In this work a novel microfluidic device was constructed in situ containing the smallest microscopic co-polymeric immobilised metal affinity (IMA) adsorbent yet documented. This device has for the first time allowed the microlitre scale chromatographic assay of histidine-tagged proteins in a biological sample. To enable this approach, rather than using a high capacity commercial packed bed column which requires large sample volumes and would be susceptible to occlusion by cell debris, a microgram capacity co-polymeric chromatographic substrate suitable for analytical applications was fabricated within a microfluidic channel. This porous co-polymeric IMA micro-chromatographic element, only 27μl in volume, was assessed for the analytical capture of two different histidine-tagged recombinant fusion proteins. The micro-chromatographic adsorber was fabricated in situ by photo-polymerising an iminodiacetic acid (IDA) functionalised polymer matrix around a template of fused 100μm diameter NH(4)Cl particles entirely within the microfluidic channel and then etching away the salt with water to form a network of interconnected voids. The surface of the micro-chromatographic adsorber was chemically functionalised with a chelating agent and loaded with Cu(2+) ions. FTIR and NMR analysis verified the presence of the chelating agent on the adsorbent surface and its Cu(2+) ion binding capacity was determined to be 2.4μmol Cu(2+) (ml of adsorbent)(-1). Micro-scale equilibrium adsorption studies using the two different histidine-tagged proteins, LacI-His(6)-GFP and α-Synuclein-His(8)-YFP, were carried out and the protein binding capacity of the adsorbent was determined to be 0.370 and 0.802mg(g of adsorbent)(-1), respectively. The dynamic binding capacity was determined at four different flow rates and found to be comparable to the equilibrium binding capacity at low flow rates. The sensing platform was also used to adsorb LacI-His(6)-GFP protein from crude cell lysate. During adsorption, laser scanning confocal microscopy identified locations within the adsorbent where protein adsorption and desorption occurred. The findings indicate that minimal channelling, selective product capture and near quantitative elution of the captured (adsorbed) product could be achieved, supporting the application of this new device as a high-throughput process analytical tool (PAT) for the in-process monitoring of histidine-tagged proteins in manufacturing.


Journal of Chromatography A | 2012

Lentivirus capture directly from cell culture with Q-functionalised microcapillary film chromatography

Nicholas J. Darton; David Darling; M. J. Townsend; D. J. McNally; Farzin Farzaneh; Nigel K.H. Slater

A new disposable adsorbent material for fast anion-exchange capture of nano-complexes without prefiltering, clarification or pre-processing of samples was developed based on plastic microcapillary films (MCFs). An MCF containing 19 parallel microcapillaries, each with a mean internal diameter of 142 ± 10 μm, was prepared using a melt extrusion process from an ethylene-vinyl alcohol copolymer (EVOH). The MCF internal surfaces were functionalised using branched chain chemistries to attach quaternary amine groups producing an anion-exchange adsorbent. The purification of nano-complexes using this newly fabricated MCF-EVOH-Q was successfully demonstrated with the capture of lentivirus from pre-filtered culture harvest. This 5m chromatographic substrate was found to bind and elute ∼40% of bound lentivirus or 2.5 × 10(6)infectious units (ifu). The unique properties of this chromatographic substrate that allow the passage of large particulates was further demonstrated with the capture of lentiviral particles from unfiltered un-processed culture media containing cells and cell debris. Using this approach, 56% or 1 × 10(7)ifu of captured lentivirus was eluted. A device based on this new material might be used at an early stage in clinical lentiviral production to harvest lentiviral particles, directly from bioreactors.


Nanomedicine: Nanotechnology, Biology and Medicine | 2008

The in-flow capture of superparamagnetic nanoparticles for targeting therapeutics

Nicholas J. Darton; Bart Hallmark; Xuan Han; Sarah Palit; Nigel K.H. Slater; Malcolm R. Mackley


Journal of Nanoparticle Research | 2010

Magnetic field strength requirements to capture superparamagnetic nanoparticles within capillary flow

Bart Hallmark; Nicholas J. Darton; Tom A. James; Pulkit Agrawal; Nigel K.H. Slater


Journal of Magnetism and Magnetic Materials | 2009

Magnetic capture of superparamagnetic nanoparticles in a constant pressure microcapillary flow

Nicholas J. Darton; Bart Hallmark; Tom A. James; Pulkit Agrawal; Malcolm R. Mackley; Nigel K.H. Slater

Collaboration


Dive into the Nicholas J. Darton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom A. James

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Palit

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge