Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nigel K.H. Slater is active.

Publication


Featured researches published by Nigel K.H. Slater.


Nanomedicine: Nanotechnology, Biology and Medicine | 2008

Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells

Xiaowen Dai; Zhilian Yue; Mark E. Eccleston; Johannes Swartling; Nigel K.H. Slater; Clemens F. Kaminski

Frequency domain fluorescence lifetime imaging microscopy (FLIM) has been used in combination with laser scanning confocal microscopy to study the cellular uptake behavior of the antitumor drug doxorubicin (DOX) and micellar-encapsulated DOX (PLyAd-DOX). The endocytosis uptake process of PLyAd-DOX was monitored over 72 hours using confocal microscopy, with a maximum fluorescence recorded at incubation periods around 24 hours. The micellar structure was not found to release the encapsulated DOX during the time course of imaging. FLIM revealed single lifetime distributions of PLyAd-DOX during accumulation in the cytoplasm. The free DOX in contrast was observed both in the cytoplasm and the nuclear domain of the cell, showing bimodal lifetime distributions. There was a marked dependence of the measured free-DOX lifetime on concentration within the cell, in contrast to reference experiments in aqueous solution, where no such dependence was found. The results suggest the formation of macromolecular structures inside the living cells.


Chemical Engineering Science | 1983

Tracer dispersion in a laboratory air-lift reactor

P.R. Fields; Nigel K.H. Slater

Abstract Measurements of single-circulation Bodenstein numbers are reported for a laboratory concentric-tube air-lift reactor operating with air—water mixtures. The Bodenstein numbers for three different lengths of draught tubes fall with increasing gas throughput but tend to a constant value when dispersion in the gas disengagement section becomes important. The change in variance of a pulse of tracer due to its passage through the head section was measured and at high gas throughputs this region approaches well-mixedness. The variation of Bodenstein numbers is determined by mixing in the riser, the downcomer, and the head section. An existing correlation is employed to examine the contribution of each section. Measurements of the influence of additives upon tracer dispersion are reported.


Biomaterials | 2009

The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides

Rongjun Chen; Sariah Khormaee; Mark E. Eccleston; Nigel K.H. Slater

pH-responsive polymers have been synthesised by grafting l-valine (PV-75), l-leucine (PL-75) and l-phenylalanine (PP-75) onto the pendant carboxylic acid moieties of a pseudo-peptide, poly(l-lysine iso-phthalamide), at a stoichiometric degree of substitution of 75 mol%. The effect of such modification on the pH-, concentration- and time-dependent cell membrane-disruptive activity of the grafted polymers has been investigated using a haemolysis model. At 0.025 mg mL(-1), the grafted polymers were almost non-haemolytic at pH 7.4, but mediated considerable membrane lysis after 60 min in the pH range characteristic of early endosomes, which ranked in the order: PP-75 > PL-75 > PV-75 > poly(l-lysine iso-phthalamide). PP-75 was 35-fold more lytic on a molar basis than the membrane-lytic peptide melittin. With increasing concentration, the grafted polymers showed an increased ability to lyse cell membranes and caused noticeable membrane disruption at physiological pH. The mechanism of the polymer-mediated membrane destabilisation has been investigated. The in-vitro cytotoxicity of the grafted polymers has been assessed using a propidium iodide fluorescence assay. It has been demonstrated by confocal microscopy that the grafted polymers can induce a significant release of endocytosed materials into the cytoplasm of HeLa cells, which is a feature critical for drug delivery applications.


Biomaterials | 2010

Generation and manipulation of magnetic multicellular spheroids

Vincent H.B. Ho; Karin H. Müller; Alexander Barcza; Rongjun Chen; Nigel K.H. Slater

Multicellular spheroids have important applications in tumour studies, drug screening and tissue engineering. To enable simple manipulation of spheroids, magnetically labelled HeLa cells were cultured in hanging drops to generate magnetic spheroids. HeLa cells were labelled by biotinylating their cell membrane proteins and then binding streptavidin paramagnetic particles onto the biotinylated cell surface. Spheroids of different sizes were obtained by varying the seeding cell concentrations within the hanging drops and the spheroids had good cell viability. Characterisation of the F-actin distribution within the spheroids indicated a three dimensional reorganisation of the cellular cytoskeleton compared to monolayer cultures. The magnetic moment of the spheroids was measured and showed a superparamagnetic response in an applied field. Transmission electron microscopy analysis indicated that the paramagnetic particles were still present in the spheroids even after 21 days of culture. These spheroids could be easily and quickly separated magnetically without the need for centrifugation. The magnetic spheroids were also successfully manipulated and patterned using magnetic fields within a few seconds. The patterned spheroids then fused together to form a larger tissue construct.


Journal of Controlled Release | 2000

pH-responsive pseudo-peptides for cell membrane disruption

Mark E. Eccleston; M Kuiper; F.M Gilchrist; Nigel K.H. Slater

We describe pseudo-peptides obtained by the copolymerisation of L-lysine and L-lysine ethyl-ester with various hydrophobic dicarboxylic acid moieties. In aqueous solution, when the carboxylic acid groups are charged, the polymers dissolve. When they are fully neutralised the hydrophobic moieties cause the polymer to precipitate. The pH range over which reversible precipitation occurs can be adjusted by changing the intramolecular hydrophilic/hydrophobic balance, by using a carboxylic acid moiety with a different pK(a) value or by changing the apparent pK(a) value of the polymer through chemical modifications of the backbone. These bio-degradable materials are well tolerated by a range of mammalian cell lines at physiological pH but display an ability to associate with the outer membranes of these cells, which they rupture to varying degrees at pH 5.5. Relative to the degree of lysis displayed by poly(L-lysine iso-phthalamide), lysis was reduced by partial esterification and increased by replacing the aromatic iso-phthaloyl moiety with a long chain aliphatic dodecyl moiety. Similar behaviour was observed for the pH-dependent rupture of human erythrocytes, where poly(L-lysine dodecanamide) displayed enhanced cell lysis at pH values <7.0 relative to poly(L-lysine iso-phthalamide).


Biomaterials | 2011

pH-responsive endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models

Vincent H.B. Ho; Nigel K.H. Slater; Rongjun Chen

Endosomolytic polymers can aid in the endosomal release of therapeutics to improve intracellular drug delivery. pH-responsive biomimetic pseudo-peptides were synthesised by grafting l-phenylalanine onto the pendant carboxylic acids of a polyamide, poly(l-lysine isophthalamide). PP-75 (stoichiometric l-phenylalanine grafting of 75 mol%) was determined to have the best endosomolytic property. The mean hydrodynamic size of PP-75 decreased with lower pH as the polymers adopted a more compact conformation due to protonation of acidic groups and increase in hydrophobicity. PP-75 was demonstrated to deliver model drugs effectively in three dimensional (3D) magnetic HeLa multicellular spheroids used as in vitro tumour models. These spheroids can be isolated easily and quickly by magnetic separation. Due to its relatively small size, PP-75 was able to penetrate from the exterior to the interior of these spheroids and was internalised by the cells in the spheroids. It could retain its pH-mediated membrane-lytic capability in 3D drug delivery by releasing internalised calcein from intracellular endosomes in the tumour models. Furthermore, cell viability results suggest that PP-75 showed no significant cytotoxicity towards cells in the spheroids. The pH-responsive PP-75 can potentially enhance the extracellular and intracellular delivery of therapeutics in tumours.


Analytical Biochemistry | 2009

Protein quantification in the presence of poly(ethylene glycol) and dextran using the Bradford method

Helder M. C. Barbosa; Nigel K.H. Slater; João Carlos Marcos

Some experimental methodologies require the quantification of protein in the presence of polymers like poly(ethylene glycol) (PEG) and dextran (DEX). In the aqueous two-phase system (ATPS) extraction of biomolecules, the interference of these phase-forming polymers on the Bradford quantification assay is commonly recognized. However, how these polymers interfere has not been reported hitherto. In this study we show that while dextran concentrations of 20% (w/w) can be used without error, loss of accuracy occurs for solutions with PEG concentrations >10% (w/w). Above this value a substantial decrease on the assay sensitivity is observed.


Biomaterials | 2010

Biopolymer mediated trehalose uptake for enhanced erythrocyte cryosurvival.

Andrew L. Lynch; Rongjun Chen; Paul Joseph Dominowski; Evgenyi Y. Shalaev; Robert J. Yancey; Nigel K.H. Slater

A biopolymer has been shown to facilitate efficient delivery of trehalose, a bioprotectant normally impermeable to the phospholipid bilayer, into ovine erythrocytes. Cellular uptake of trehalose was found to be dependent on polymer pendant amino acid type and degree of grafting, polymer concentration, pH, external trehalose concentration, incubation temperature and time. Optimization of these parameters yielded an intracellular trehalose concentration of 123 +/- 16 mM and concomitant improvement of erythrocyte cryosurvival of up to 20.4 +/- 5.6%. Intracellular trehalose was shown to impart cellular osmoprotection up to an external osmolarity of 230 mOsm and increased osmotic sensitivity above this threshold. Biopolymer mediated membrane permeability was shown to be rapidly and completely reversible via washing with phosphate buffered saline.


Langmuir | 2012

Encapsulation of Yeast Cells in Colloidosomes

Polly H. R. Keen; Nigel K.H. Slater; Alexander F. Routh

Polymeric colloidosomes encapsulating viable Bakers yeast cells were prepared. To make the capsules, an aqueous suspension of 153 nm poly(methyl methacrylate-co-butyl acrylate) latex particles plus yeast cells is emulsified in a continuous phase of sunflower oil. By adding a small amount of ethanol to the oil phase, the latex particles at the surface of the emulsion droplets aggregate, forming the colloidosome shells. The microcapsules have been examined using optical, confocal, and scanning electron microscopies. The viability of the yeast cells was tested using fluorescent molecular probes. The encapsulated Bakers yeast cells were able to metabolize glucose from solution, although at a slower rate compared to nonencapsulated yeast. This demonstrates diffusion limitation through the colloidosome shell. The diffusive resistance could be increased by manufacturing colloidosomes with a double latex shell.


Journal of Chromatography A | 2009

Immobilized metal affinity chromatography of histidine-tagged lentiviral vectors using monolithic adsorbents

M. C. Cheeks; N. Kamal; A. Sorrell; David Darling; Farzin Farzaneh; Nigel K.H. Slater

Histidine-tagged lentiviral vectors were separated from crude cell culture supernatant using labscale monolithic adsorbents by immobilized metal affinity chromatography. The capture capacity, concentration factor, purification factor, and elution efficiency of a supermacroporous cryogel monolith were evaluated against the BIA Separations convective interaction media (CIM) disc, which is a commercial macroporous monolith. The morphology of the polymeric cryogel material was characterised by scanning electron microscopy. Iminodiacetic acid was used as the metal chelating ligand in both monoliths and the chelating capacity for metal ions was found to be comparable. The CIM-IDA-Ni(2+) adsorbent had the greatest capture capacity (6.7 x 10(8) IU/ml of adsorbent), concentration factor (1.3-fold), and elution efficiency (69%). Advantages of the cryogel monoliths included rapid, low pressure processing as well low levels of protein and DNA in the final purified vector preparations.

Collaboration


Dive into the Nigel K.H. Slater's collaboration.

Top Co-Authors

Avatar

Rongjun Chen

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge