Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas J. Kruger is active.

Publication


Featured researches published by Nicholas J. Kruger.


Methods of Molecular Biology | 1988

The Bradford Method for Protein Quantitation

Nicholas J. Kruger

A rapid and accurate method for the estimation of protein concentration is essential in many fields of protein study. The Lowry method ( Chapter 1 in vol. 1 of this series) has been widely used, but is susceptible to interference from a wide range of compounds commonly present in biological extracts. Although interference can be avoided by trichloracetic acid precipitation of the protein prior to assay, this lengthens the procedure.


Current Opinion in Plant Biology | 2003

The oxidative pentose phosphate pathway: structure and organisation

Nicholas J. Kruger; Antje von Schaewen

The oxidative pentose phosphate pathway is a major source of reducing power and metabolic intermediates for biosynthetic processes. Some, if not all, of the enzymes of the pathway are found in both the cytosol and plastids, although the precise distribution of their activities varies. The apparent absence of sections of the pathway from the cytosol potentially complicates metabolism. These complications are partly offset, however, by exchange of intermediates between the cytosol and the plastids through the activities of a family of plastid phosphate translocators. Molecular analysis is confirming the widespread presence of multiple genes encoding each of the enzymes of the oxidative pentose phosphate pathway. Differential expression of these isozymes may ensure that the kinetic properties of the activity that catalyses a specific reaction match the metabolic requirements of a particular tissue. This hypothesis can be tested thanks to recent developments in the application of 13C-steady-state labelling strategies. These strategies make it possible to quantify flux through metabolic networks and to discriminate between pathways of carbohydrate oxidation in the cytosol and plastids.


Planta | 2001

Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells

Alisdair R. Fernie; A. Roscher; R. G. Ratcliffe; Nicholas J. Kruger

Abstract. The aim of this work was to establish the influence of fructose 2,6-bisphosphate (Fru-2,6-P2) on non-photosynthetic carbohydrate metabolism in plants. Heterotrophic callus lines exhibiting elevated levels of Fru-2,6-P2 were generated from transgenic tobacco (Nicotiana tabacum L.) plants expressing a modified rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Lines containing increased amounts of Fru-2,6-P2 had lower levels of hexose phosphates and higher levels of 3-phosphoglycerate than the untransformed control cultures. There was also a greater redistribution of label into the C6 position of sucrose and fructose, following incubation with [1-13C]glucose, in the lines possessing the highest amounts of Fru-2,6-P2, indicating a greater re-synthesis of hexose phosphates from triose phosphates in these lines. Despite these changes, there were no marked differences between lines in the metabolism of 14C-substrates, the rate of oxygen uptake, carbohydrate accumulation or nucleotide pool sizes. These data provide direct evidence that physiologically relevant changes in the level of Fru-2,6-P2 can affect pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) activity in vivo, and are consistent with PFP operating in a net glycolytic direction in the heterotrophic culture. However, the results also show that activating PFP has little direct effect on heterotrophic carbohydrate metabolism beyond increasing the rate of cycling between hexose phosphates and triose phosphates.


Journal of Biotechnology | 2000

Strategies for metabolic flux analysis in plants using isotope labelling.

A. Roscher; Nicholas J. Kruger; R. G. Ratcliffe

Flux measurements through metabolic pathways generate insights into the integration of metabolism, and there is increasing interest in using such measurements to quantify the metabolic effects of mutation and genetic manipulation. Isotope labelling provides a powerful approach for measuring metabolic fluxes, and it gives rise to several distinct methods based on either dynamic or steady-state experiments. We discuss the application of these methods to photosynthetic and non-photosynthetic plant tissues, and we illustrate the different approaches with an analysis of the pathways interconverting hexose phosphates and triose phosphates. The complicating effects of the pentose phosphate pathway and the problems arising from the extensive compartmentation of plant cell metabolism are considered. The non-trivial nature of the analysis is emphasised by reference to invalid deductions in earlier work. It is concluded that steady-state isotopic labelling experiments can provide important information on the fluxes through primary metabolism in plants, and that the combination of stable isotope labelling with detection by nuclear magnetic resonance is particularly informative.


Nature Protocols | 2008

1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues

Nicholas J. Kruger; M. Adrián Troncoso-Ponce; R. George Ratcliffe

Metabolite fingerprinting provides a powerful method for discriminating between biological samples on the basis of differences in metabolism caused by such factors as growth conditions, developmental stage or genotype. This protocol describes a technique for acquiring metabolite fingerprints from samples of plant origin. The preferred method involves freezing the tissue rapidly to stop metabolism, extracting soluble metabolites using perchloric acid (HClO4) and then obtaining a fingerprint of the metabolic composition of the sample using 1D 1H NMR spectroscopy. The spectral fingerprints of multiple samples may be analyzed using either unsupervised or supervised multivariate statistical methods, and these approaches are illustrated with data obtained from the developing seeds of two genotypes of sunflower (Helianthus annuus). Preparation of plant extracts for analysis takes 2–3 d, but multiple samples can be processed in parallel and subsequent acquisition of NMR spectra takes ∼30 min per sample, allowing 24–48 samples to be analyzed in a week.


Plant Physiology | 2008

Metabolic Network Fluxes in Heterotrophic Arabidopsis Cells: Stability of the Flux Distribution under Different Oxygenation Conditions

Thomas C.R. Williams; Laurent Miguet; Shyam K. Masakapalli; Nicholas J. Kruger; Lee J. Sweetlove; R. George Ratcliffe

Steady-state labeling experiments with [1-13C]Glc were used to measure multiple metabolic fluxes through the pathways of central metabolism in a heterotrophic cell suspension culture of Arabidopsis (Arabidopsis thaliana). The protocol was based on in silico modeling to establish the optimal labeled precursor, validation of the isotopic and metabolic steady state, extensive nuclear magnetic resonance analysis of the redistribution of label into soluble metabolites, starch, and protein, and a comprehensive set of biomass measurements. Following a simple modification of the cell culture procedure, cells were grown at two oxygen concentrations, and flux maps of central metabolism were constructed on the basis of replicated experiments and rigorous statistical analysis. Increased growth rate at the higher O2 concentration was associated with an increase in fluxes throughout the network, and this was achieved without any significant change in relative fluxes despite differences in the metabolite profile of organic acids, amino acids, and carbohydrates. The balance between biosynthesis and respiration within the tricarboxylic acid cycle was unchanged, with 38% ± 5% of carbon entering used for biosynthesis under standard O2 conditions and 33% ± 2% under elevated O2. These results add to the emerging picture of the stability of the central metabolic network and its capacity to respond to physiological perturbations with the minimum of rearrangement. The lack of correlation between the change in metabolite profile, which implied significant disruption of the metabolic network following the alteration in the oxygen supply, and the unchanging flux distribution highlights a potential difficulty in the interpretation of metabolomic data.


Plant Physiology | 2004

A Mutant of Arabidopsis Lacking the Triose-Phosphate/Phosphate Translocator Reveals Metabolic Regulation of Starch Breakdown in the Light

Robin G. Walters; Douglas G. Ibrahim; Peter Horton; Nicholas J. Kruger

The chloroplast envelope triose-phosphate/phosphate translocator (TPT) is responsible for carbohydrate export during photosynthesis. Using measurements of carbohydrates, partitioning of assimilated 14CO2, photosynthetic gas exchange, and chlorophyll fluorescence, we show that a mutant of Arabidopsis lacking the TPT increases synthesis of starch compared to the wild type, thereby compensating for a deficiency in its ability to export triose-phosphate from the chloroplast. However, during growth under high light, the capacity for starch synthesis becomes limiting so that the chloroplastic phosphate pool is depleted, resulting in a restriction on electron transport, a reduction in the rate of photosynthesis, and slowed plant growth. Under the same conditions but not under low light, we observe release of 14C label from starch, indicating that its synthesis and degradation occur simultaneously in the light. The induction of starch turnover in the mutant specifically under high light conditions leads us to conclude that it is regulated by one or more metabolic signals, which arise as a result of phosphate limitation of photosynthesis.


PLOS Pathogens | 2011

C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation.

Dany J. V. Beste; Bhushan Bonde; Nathaniel D. Hawkins; Jane L. Ward; Michael H. Beale; Stephan Noack; Katharina Nöh; Nicholas J. Kruger; R. George Ratcliffe; Johnjoe McFadden

Mycobacterium tuberculosis requires the enzyme isocitrate lyase (ICL) for growth and virulence in vivo. The demonstration that M. tuberculosis also requires ICL for survival during nutrient starvation and has a role during steady state growth in a glycerol limited chemostat indicates a function for this enzyme which extends beyond fat metabolism. As isocitrate lyase is a potential drug target elucidating the role of this enzyme is of importance; however, the role of isocitrate lyase has never been investigated at the level of in vivo fluxes. Here we show that deletion of one of the two icl genes impairs the replication of Mycobacterium bovis BCG at slow growth rate in a carbon limited chemostat. In order to further understand the role of isocitrate lyase in the central metabolism of mycobacteria the effect of growth rate on the in vivo fluxes was studied for the first time using 13C-metabolic flux analysis (MFA). Tracer experiments were performed with steady state chemostat cultures of BCG or M. tuberculosis supplied with 13C labeled glycerol or sodium bicarbonate. Through measurements of the 13C isotopomer labeling patterns in protein-derived amino acids and enzymatic activity assays we have identified the activity of a novel pathway for pyruvate dissimilation. We named this the GAS pathway because it utilizes the Glyoxylate shunt and Anapleurotic reactions for oxidation of pyruvate, and Succinyl CoA synthetase for the generation of succinyl CoA combined with a very low flux through the succinate – oxaloacetate segment of the tricarboxylic acid cycle. We confirm that M. tuberculosis can fix carbon from CO2 into biomass. As the human host is abundant in CO2 this finding requires further investigation in vivo as CO2 fixation may provide a point of vulnerability that could be targeted with novel drugs. This study also provides a platform for further studies into the metabolism of M. tuberculosis using 13C-MFA.


Plant Physiology | 2010

Subcellular Flux Analysis of Central Metabolism in a Heterotrophic Arabidopsis Cell Suspension Using Steady-State Stable Isotope Labeling

Shyam K. Masakapalli; Pascaline Le Lay; Joanna E. Huddleston; Naomi L. Pollock; Nicholas J. Kruger; R. George Ratcliffe

The presence of cytosolic and plastidic pathways of carbohydrate oxidation is a characteristic feature of plant cell metabolism. Ideally, steady-state metabolic flux analysis, an emerging tool for creating flux maps of heterotrophic plant metabolism, would capture this feature of the metabolic phenotype, but the extent to which this can be achieved is uncertain. To address this question, fluxes through the pathways of central metabolism in a heterotrophic Arabidopsis (Arabidopsis thaliana) cell suspension culture were deduced from the redistribution of label in steady-state 13C-labeling experiments using [1-13C]-, [2-13C]-, and [U-13C6]glucose. Focusing on the pentose phosphate pathway (PPP), multiple data sets were fitted simultaneously to models in which the subcellular compartmentation of the PPP was altered. The observed redistribution of the label could be explained by any one of three models of the subcellular compartmentation of the oxidative PPP, but other biochemical evidence favored the model in which the oxidative steps of the PPP were duplicated in the cytosol and plastids, with flux through these reactions occurring largely in the cytosol. The analysis emphasizes the inherent difficulty of analyzing the PPP without predefining the extent of its compartmentation and the importance of obtaining high-quality data that report directly on specific subcellular processes. The Arabidopsis flux map also shows that the potential ATP yield of respiration in heterotrophic plant cells can greatly exceed the direct metabolic requirements for biosynthesis, highlighting the need for caution when predicting flux through metabolic networks using assumptions based on the energetics of resource utilization.


Biochimie | 2009

Insights into plant metabolic networks from steady-state metabolic flux analysis.

Nicholas J. Kruger; R. George Ratcliffe

Steady-state metabolic flux analysis (MFA) is an experimental approach that allows the measurement of multiple fluxes in the core network of primary carbon metabolism. It is based on isotopic labelling experiments, and although well established in the analysis of micro-organisms, and some mammalian systems, the extension of the method to plant cells has been challenging because of the extensive subcellular compartmentation of the metabolic network. Despite this difficulty there has been substantial progress in developing robust protocols for the analysis of heterotrophic plant metabolism by steady-state MFA, and flux maps have now been published that reflect the metabolic phenotypes of excised root tips, developing embryos and cotyledons, hairy root cultures, and cell suspensions under a variety of physiological conditions. There has been a steady improvement in the quality, extent and statistical reliability of these analyses, and new information is emerging on the performance of the plant metabolic network and the contributions of specific pathways. The principles of steady-state MFA are outlined here, the current status of the technique for characterizing primary metabolism in plants is described, and its complementary relationship to metabolomic analysis based on metabolite composition is discussed. It is argued that there is still considerable scope for further development of the technique, either by implementing refinements that have already been adopted in microbial investigations, or by developing techniques that are particularly relevant to the problems posed by plant tissues. If successful, these developments will lead to a more powerful phenotyping tool that will be faster to implement, and which will provide the basis for fully predictive mechanistic models of the network. This in turn will lead to an improved understanding of the regulation of plant metabolic networks, as well as a firm foundation for rational metabolic engineering.

Collaboration


Dive into the Nicholas J. Kruger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge