Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas Paul Gauthier is active.

Publication


Featured researches published by Nicholas Paul Gauthier.


Nucleic Acids Research | 2007

Cyclebase.org—a comprehensive multi-organism online database of cell-cycle experiments

Nicholas Paul Gauthier; Malene Erup Larsen; Rasmus Wernersson; Ulrik de Lichtenberg; Lars Juhl Jensen; Søren Brunak; Thomas Skøt Jensen

The past decade has seen the publication of a large number of cell-cycle microarray studies and many more are in the pipeline. However, data from these experiments are not easy to access, combine and evaluate. We have developed a centralized database with an easy-to-use interface, Cyclebase.org, for viewing and downloading these data. The user interface facilitates searches for genes of interest as well as downloads of genome-wide results. Individual genes are displayed with graphs of expression profiles throughout the cell cycle from all available experiments. These expression profiles are normalized to a common timescale to enable inspection of the combined experimental evidence. Furthermore, state-of-the-art computational analyses provide key information on both individual experiments and combined datasets such as whether or not a gene is periodically expressed and, if so, the time of peak expression. Cyclebase is available at http://www.cyclebase.org.


PLOS Computational Biology | 2013

Perturbation biology: inferring signaling networks in cellular systems.

Evan Molinelli; Anil Korkut; Weiqing Wang; Martin L. Miller; Nicholas Paul Gauthier; Xiaohong Jing; Poorvi Kaushik; Qin He; Gordon B. Mills; David B. Solit; Christine A. Pratilas; Martin Weigt; Alfredo Braunstein; Andrea Pagnani; Riccardo Zecchina; Chris Sander

We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology.


Nucleic Acids Research | 2010

Cyclebase.org: version 2.0, an updated comprehensive, multi-species repository of cell cycle experiments and derived analysis results

Nicholas Paul Gauthier; Lars Juhl Jensen; Rasmus Wernersson; Søren Brunak; Thomas Skøt Jensen

Cell division involves a complex series of events orchestrated by thousands of molecules. To study this process, researchers have employed mRNA expression profiling of synchronously growing cell cultures progressing through the cell cycle. These experiments, which have been carried out in several organisms, are not easy to access, combine and evaluate. Complicating factors include variation in interdivision time between experiments and differences in relative duration of each cell-cycle phase across organisms. To address these problems, we created Cyclebase, an online resource of cell-cycle-related experiments. This database provides an easy-to-use web interface that facilitates visualization and download of genome-wide cell-cycle data and analysis results. Data from different experiments are normalized to a common timescale and are complimented with key cell-cycle information and derived analysis results. In Cyclebase version 2.0, we have updated the entire database to reflect changes to genome annotations, included information on cyclin-dependent kinase (CDK) substrates, predicted degradation signals and loss-of-function phenotypes from genome-wide screens. The web interface has been improved and provides a single, gene-centric graph summarizing the available cell-cycle experiments. Finally, key information and links to orthologous and paralogous genes are now included to further facilitate comparison of cell-cycle regulation across species. Cyclebase version 2.0 is available at http://www.cyclebase.org.


Cell systems | 2015

Pan-Cancer Analysis of Mutation Hotspots in Protein Domains

Martin L. Miller; Ed Reznik; Nicholas Paul Gauthier; Bülent Arman Aksoy; Anil Korkut; Jianjiong Gao; Giovanni Ciriello; Nikolaus Schultz; Chris Sander

In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype.


Nature Methods | 2013

Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments

Nicholas Paul Gauthier; Boumediene Soufi; William E. Walkowicz; Virginia A. Pedicord; Konstantinos J Mavrakis; Boris Macek; David Y. Gin; Chris Sander; Martin L. Miller

We report a technique to selectively and continuously label the proteomes of individual cell types in coculture, named cell type–specific labeling using amino acid precursors (CTAP). Through transgenic expression of exogenous amino acid biosynthesis enzymes, vertebrate cells overcome their dependence on supplemented essential amino acids and can be selectively labeled through metabolic incorporation of amino acids produced from heavy isotope–labeled precursors. When testing CTAP in several human and mouse cell lines, we could differentially label the proteomes of distinct cell populations in coculture and determine the relative expression of proteins by quantitative mass spectrometry. In addition, using CTAP we identified the cell of origin of extracellular proteins secreted from cells in coculture. We believe that this method, which allows linking of proteins to their cell source, will be useful in studies of cell-cell communication and potentially for discovery of biomarkers.


Oncogene | 2014

TRIM3, a tumor suppressor linked to regulation of p21(Waf1/Cip1.).

Yuhui Liu; Radhika Raheja; Nancy Yeh; Daniel Ciznadija; Alicia Pedraza; Tatsuya Ozawa; Ellen Hukkelhoven; Hediye Erdjument-Bromage; Paul Tempst; Nicholas Paul Gauthier; Cameron Brennan; Eric C. Holland; Andrew Koff

The TRIM family of genes is largely studied because of their roles in development, differentiation and host cell antiviral defenses; however, roles in cancer biology are emerging. Loss of heterozygosity of the TRIM3 locus in ∼20% of human glioblastomas raised the possibility that this NHL-domain containing member of the TRIM gene family might be a mammalian tumor suppressor. Consistent with this, reducing TRIM3 expression increased the incidence of and accelerated the development of platelet-derived growth factor -induced glioma in mice. Furthermore, TRIM3 can bind to the cdk inhibitor p21WAF1/CIP1. Thus, we conclude that TRIM3 is a tumor suppressor mapping to chromosome 11p15.5 and that it might block tumor growth by sequestering p21 and preventing it from facilitating the accumulation of cyclin D1–cdk4.


Nucleic Acids Research | 2016

MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

Nicholas Paul Gauthier; Ed Reznik; Jianjiong Gao; Selcuk Onur Sumer; Nikolaus Schultz; Chris Sander; Martin L. Miller

The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects.


npj Systems Biology and Applications | 2018

Systems pharmacology using mass spectrometry identifies critical response nodes in prostate cancer

H. Alexander Ebhardt; Alex Root; Yansheng Liu; Nicholas Paul Gauthier; Chris Sander; Ruedi Aebersold

In the United States alone one in five newly diagnosed cancers in men are prostate carcinomas (PCa). Androgen receptor (AR) status and the PI3K-AKT-mTOR signal transduction pathway are critical in PCa. After initial response to single drugs targeting these pathways resistance often emerges, indicating the need for combination therapy. Here, we address the question of efficacy of drug combinations and development of resistance mechanisms to targeted therapy by a systems pharmacology approach. We combine targeted perturbation with detailed observation of the molecular response by mass spectrometry. We hypothesize that the molecular short-term (24 h) response reveals details of how PCa cells adapt to counter the anti-proliferative drug effect. With focus on six drugs currently used in PCa treatment or targeting the PI3K-AKT-mTOR signal transduction pathway, we perturbed the LNCaP clone FGC cell line by a total of 21 treatment conditions using single and paired drug combinations. The molecular response was analyzed by the mass spectrometric quantification of 52 proteins. Analysis of the data revealed a pattern of strong responders, i.e., proteins that were consistently downregulated or upregulated across many of the perturbation conditions. The downregulated proteins, HN1, PAK1, and SPAG5, are potential early indicators of drug efficacy and point to previously less well-characterized response pathways in PCa cells. Some of the upregulated proteins such as 14-3-3 proteins and KLK2 may be useful early markers of adaptive response and indicate potential resistance pathways targetable as part of combination therapy to overcome drug resistance. The potential of 14-3-3ζ (YWHAZ) as a target is underscored by the independent observation, based on cancer genomics of surgical specimens, that its DNA copy number and transcript levels tend to increase with PCa disease progression. The combination of systematic drug perturbation combined with detailed observation of short-term molecular response using mass spectrometry is a potentially powerful tool to discover response markers and anti-resistance targets.Author summaryMetastatic prostate cancer is often treated with pharmacological agents to prevent the tumor from expanding; however, despite advances in drug development patients often die of the disease. An international research team lead by Ruedi Aebersold (ETH Zürich, Switzerland) and Chris Sander (Dana Faber Cancer Institute, Boston, USA) asked how prostate cancer cells adapt to pharmacological treatment on the molecular protein level and find a general response in their prostate cancer model. Next, they asked if similar changes are found in prostate cancer patients. Indeed, the same proteins upregulated in prostate cancer models are also upregulated in prostate cancer patients. Immediately, this has implications for patient treatment stratification and opens new avenues for drug developments in metastatic prostate cancer.


bioRxiv | 2018

3D protein structure from genetic epistasis experiments

Nathan Rollins; Kelly P. Brock; Frank J Poelwijk; Michael A. Stiffler; Nicholas Paul Gauthier; Chris Sander; Debora S. Marks

High-throughput experimental techniques have made possible the systematic sampling of the single mutation landscape for many proteins, defined as the change in protein fitness as the result of point mutation sequence changes. In a more limited number of cases, and for small proteins only, we also have nearly full coverage of all possible double mutants. By comparing the phenotypic effect of two simultaneous mutations with that of the individual amino acid changes, we can evaluate epistatic effects that reflect non-additive cooperative processes. The observation that epistatic residue pairs often are in contact in the 3D structure led to the hypothesis that a systematic epistatic screen contains sufficient information to identify the 3D fold of a protein. To test this hypothesis, we examined experimental double mutants for evidence of epistasis and identified residue contacts at 86% accuracy, including secondary structure elements and evidence for an alternative all-α-helical conformation. Positively epistatic contacts – corresponding to compensatory mutations, restoring fitness – were the most informative. Folded models generated from top-ranked epistatic pairs, when compared with the known structure, were accurate within 2.4 Å over 53 residues, indicating the possibility that 3D protein folds can be determined experimentally with good accuracy from functional assays of mutant libraries, at least for small proteins. These results suggest a new experimental approach for determining protein structure.


bioRxiv | 2017

Protein Profiling In Cancer Cell Lines And Tumor Tissue Using Reverse Phase Protein Arrays

Xiaohong Jing; Weiqing Wang; Nicholas Paul Gauthier; Poorvi Kaushik; Alex Root; Richard R. Stein; Anil Korkut; Chris Sander

Reverse phase protein array (RPPA) technology is an antibody-based high-throughput assay for protein profiling of biological specimens that allows for many measurements with very small amounts of cell lysate. Here, we report the sensitivity, reproducibility, and accuracy of a particular RPPA platform called Zeptosens. We customized the RPPA protocol for our in-house setup, and measured more than 80 total protein and phospho-protein levels in various cancer samples, including cell lines, organoids, tumor chunks, core needle biopsies, and laser-capture microdissected tissue samples. We discuss pros and cons of the RPPA platform, and describe results from profiling 15 cancer cell line cells using RPPA.

Collaboration


Dive into the Nicholas Paul Gauthier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anil Korkut

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ed Reznik

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Nikolaus Schultz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alex Root

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bülent Arman Aksoy

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giovanni Ciriello

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jianjiong Gao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Poorvi Kaushik

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge